Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.724
Filtrar
1.
Methods Mol Biol ; 2829: 127-156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38951331

RESUMEN

The baculovirus expression vector system (BEVS) has now found acceptance in both research laboratories and industry, which can be attributed to many of its key features including the limited host range of the vectors, their non-pathogenicity to humans, and the mammalian-like post-translational modification (PTMs) that can be achieved in insect cells. In fact, this system acts as a middle ground between prokaryotes and higher eukaryotes to produce complex biologics. Still, industrial use of the BEVS lags compared to other platforms. We have postulated that one reason for this has been a lack of genetic tools that can complement the study of baculovirus vectors, while a second reason is the co-production of the baculovirus vector with the desired product. While some genetic enhancements have been made to improve the BEVS as a production platform, the genome remains under-scrutinized. This chapter outlines the methodology for a CRISPR-Cas9-based transfection-infection assay to probe the baculovirus genome for essential/nonessential genes that can potentially maximize foreign gene expression under a promoter of choice.


Asunto(s)
Baculoviridae , Sistemas CRISPR-Cas , Vectores Genéticos , Baculoviridae/genética , Vectores Genéticos/genética , Animales , Genes Esenciales , Expresión Génica , Transfección/métodos , Edición Génica/métodos , Células Sf9 , Humanos
2.
Methods Mol Biol ; 2829: 301-327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38951346

RESUMEN

Efficient genome editing by using CRISPR technologies requires simultaneous and efficient delivery of multiple genetically encoded components to mammalian cells. Amongst all editing approaches, prime editing (PE) has the unique potential to perform seamless genome rewriting, in the absence of DNA double-strand breaks (DSBs). The cargo capacity required for efficient PE delivery to mammalian cells stands at odd with the limited packaging capacity of traditional viral delivery vectors. By contrast, baculovirus (BV) has a large synthetic DNA capacity and can efficiently transduce mammalian cells. Here we describe a protocol for the assembly of baculovirus vectors for multiplexed prime editing in mammalian cells.


Asunto(s)
Baculoviridae , Sistemas CRISPR-Cas , Edición Génica , Vectores Genéticos , Baculoviridae/genética , Edición Génica/métodos , Vectores Genéticos/genética , Humanos , Animales , Células HEK293
3.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 314-320, 2024 Jun 17.
Artículo en Chino | MEDLINE | ID: mdl-38952320

RESUMEN

CRISPR/Cas system, an adaptive immune system with clustered regularly interspaced short palindromic repeats, may interfere with exogenous nucleic acids and protect prokaryotes from external damages, is an effective gene editing and nucleic acid detection tools. The CRISPR/Cas system has been widely applied in virology and bacteriology; however, there is relatively less knowledge about the application of the CRISPR/Cas system in parasitic diseases. The review summarizes the mechanisms of action of the CRISPR/Cas system and provides a comprehensive overview of their application in gene editing and nucleic acid detection of parasitic diseases, so as to provide insights into future studies on parasitic diseases.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Enfermedades Parasitarias , Edición Génica/métodos , Humanos , Enfermedades Parasitarias/diagnóstico , Animales , Ácidos Nucleicos/análisis , Ácidos Nucleicos/genética
4.
J Clin Invest ; 134(12)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38950310

RESUMEN

In utero gene editing (IUGE) is a potential treatment for inherited diseases that cause pathology before or soon after birth. Preexisting immunity to adeno-associated virus (AAV) vectors and Cas9 endonuclease may limit postnatal gene editing. The tolerogenic fetal immune system minimizes a fetal immune barrier to IUGE. However, the ability of maternal immunity to limit fetal gene editing remains a question. We investigated whether preexisting maternal immunity to AAV or Cas9 impairs IUGE. Using a combination of fluorescent reporter mice and a murine model of a metabolic liver disease, we demonstrated that maternal anti-AAV IgG antibodies were efficiently transferred from dam to fetus and impaired IUGE in a maternal titer-dependent fashion. By contrast, maternal cellular immunity was inefficiently transferred to the fetus, and neither maternal cellular nor humoral immunity to Cas9 impaired IUGE. Using human umbilical cord and maternal blood samples collected from mid- to late-gestation pregnancies, we demonstrated that maternal-fetal transmission of anti-AAV IgG was inefficient in midgestation compared with term, suggesting that the maternal immune barrier to clinical IUGE would be less relevant at midgestation. These findings support immunologic advantages for IUGE and inform maternal preprocedural testing protocols and exclusion criteria for future clinical trials.


Asunto(s)
Dependovirus , Edición Génica , Animales , Femenino , Dependovirus/genética , Dependovirus/inmunología , Ratones , Embarazo , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/genética , Inmunoglobulina G/sangre , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/inmunología , Vectores Genéticos/inmunología , Intercambio Materno-Fetal/inmunología , Intercambio Materno-Fetal/genética , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Sistemas CRISPR-Cas , Feto/inmunología , Inmunidad Materno-Adquirida/inmunología
5.
Appl Microbiol Biotechnol ; 108(1): 400, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951186

RESUMEN

Over the past years, several methods have been developed for gene cloning. Choosing a cloning strategy depends on various factors, among which simplicity and affordability have always been considered. The aim of this study, on the one hand, is to simplify gene cloning by skipping in vitro assembly reactions and, on the other hand, to reduce costs by eliminating relatively expensive materials. We investigated a cloning system using Escherichia coli harboring two plasmids, pLP-AmpR and pScissors-CmR. The pLP-AmpR contains a landing pad (LP) consisting of two genes (λ int and λ gam) that allow the replacement of the transformed linear DNA using site-specific recombination. After the replacement process, the inducible expressing SpCas9 and specific sgRNA from the pScissors-CmR (CRISPR/Cas9) vector leads to the removal of non-recombinant pLP-AmpR plasmids. The function of LP was explored by directly transforming PCR products. The pScissors-CmR plasmid was evaluated for curing three vectors, including the origins of pBR322, p15A, and pSC101. Replacing LP with a PCR product and fast-eradicating pSC101 origin-containing vectors was successful. Recombinant colonies were confirmed following gene replacement and plasmid curing processes. The results made us optimistic that this strategy may potentially be a simple and inexpensive cloning method. KEY POINTS: •The in vivo cloning was performed by replacing the target gene with the landing pad. •Fast eradication of non-recombinant plasmids was possible by adapting key vectors. •This strategy is not dependent on in vitro assembly reactions and expensive materials.


Asunto(s)
Clonación Molecular , Escherichia coli , Plásmidos , Reacción en Cadena de la Polimerasa , Recombinación Genética , Escherichia coli/genética , Clonación Molecular/métodos , Plásmidos/genética , Reacción en Cadena de la Polimerasa/métodos , Vectores Genéticos/genética , Sistemas CRISPR-Cas
6.
Nat Commun ; 15(1): 5502, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951519

RESUMEN

Resistance to chemotherapy has been a major hurdle that limits therapeutic benefits for many types of cancer. Here we systematically identify genetic drivers underlying chemoresistance by performing 30 genome-scale CRISPR knockout screens for seven chemotherapeutic agents in multiple cancer cells. Chemoresistance genes vary between conditions primarily due to distinct genetic background and mechanism of action of drugs, manifesting heterogeneous and multiplexed routes towards chemoresistance. By focusing on oxaliplatin and irinotecan resistance in colorectal cancer, we unravel that evolutionarily distinct chemoresistance can share consensus vulnerabilities identified by 26 second-round CRISPR screens with druggable gene library. We further pinpoint PLK4 as a therapeutic target to overcome oxaliplatin resistance in various models via genetic ablation or pharmacological inhibition, highlighting a single-agent strategy to antagonize evolutionarily distinct chemoresistance. Our study not only provides resources and insights into the molecular basis of chemoresistance, but also proposes potential biomarkers and therapeutic strategies against such resistance.


Asunto(s)
Antineoplásicos , Sistemas CRISPR-Cas , Resistencia a Antineoplásicos , Irinotecán , Oxaliplatino , Proteínas Serina-Treonina Quinasas , Resistencia a Antineoplásicos/genética , Humanos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Oxaliplatino/farmacología , Irinotecán/farmacología , Sistemas CRISPR-Cas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Animales , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
7.
BMC Genomics ; 25(1): 650, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951796

RESUMEN

BACKGROUND: Viperin, also known as radical S-adenosyl-methionine domain containing protein 2 (RSAD2), is an interferon-inducible protein that is involved in the innate immune response against a wide array of viruses. In mammals, Viperin exerts its antiviral function through enzymatic conversion of cytidine triphosphate (CTP) into its antiviral analog ddhCTP as well as through interactions with host proteins involved in innate immune signaling and in metabolic pathways exploited by viruses during their life cycle. However, how Viperin modulates the antiviral response in fish remains largely unknown. RESULTS: For this purpose, we developed a fathead minnow (Pimephales promelas) clonal cell line in which the unique viperin gene has been knocked out by CRISPR/Cas9 genome-editing. In order to decipher the contribution of fish Viperin to the antiviral response and its regulatory role beyond the scope of the innate immune response, we performed a comparative RNA-seq analysis of viperin-/- and wildtype cell lines upon stimulation with recombinant fathead minnow type I interferon. CONCLUSIONS: Our results revealed that Viperin does not exert positive feedback on the canonical type I IFN but acts as a negative regulator of the inflammatory response by downregulating specific pro-inflammatory genes and upregulating repressors of the NF-κB pathway. It also appeared to play a role in regulating metabolic processes, including one carbon metabolism, bone formation, extracellular matrix organization and cell adhesion.


Asunto(s)
Cyprinidae , Inflamación , Animales , Cyprinidae/metabolismo , Cyprinidae/genética , Inflamación/metabolismo , Inflamación/genética , Inmunidad Innata , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Línea Celular , Sistemas CRISPR-Cas , Interferón Tipo I/metabolismo , Edición Génica , Regulación de la Expresión Génica
8.
Commun Biol ; 7(1): 797, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956406

RESUMEN

The nonconventional yeast Kluyveromyces marxianus has potential for industrial production, but the lack of advanced synthetic biology tools for precise engineering hinders its rapid development. Here, we introduce a CRISPR-Cas9-mediated multilocus integration method for assembling multiple exogenous genes. Using SlugCas9-HF, a high-fidelity Cas9 nuclease, we enhance gene editing precision. Specific genomic loci predisposed to efficient integration and expression of heterologous genes are identified and combined with a set of paired CRISPR-Cas9 expression plasmids and donor plasmids to establish a CRISPR-based biosynthesis toolkit. This toolkit enables genome integration of large gene modules over 12 kb and achieves simultaneous quadruple-locus integration in a single step with 20% efficiency. As a proof-of-concept, we apply the toolkit to screen for gene combinations that promote heme production, revealing the importance of HEM4Km and HEM12Sc. This CRISPR-based toolkit simplifies the reconstruction of complex pathways in K. marxianus, broadening its application in synthetic biology.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Kluyveromyces , Kluyveromyces/genética , Edición Génica/métodos , Plásmidos/genética , Biología Sintética/métodos , Hemo/metabolismo , Hemo/genética , Hemo/biosíntesis
9.
Front Immunol ; 15: 1411393, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962002

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapy has proven a breakthrough in cancer treatment in the last decade, giving unprecedented results against hematological malignancies. All approved CAR T-cell products, as well as many being assessed in clinical trials, are generated using viral vectors to deploy the exogenous genetic material into T-cells. Viral vectors have a long-standing clinical history in gene delivery, and thus underwent iterations of optimization to improve their efficiency and safety. Nonetheless, their capacity to integrate semi-randomly into the host genome makes them potentially oncogenic via insertional mutagenesis and dysregulation of key cellular genes. Secondary cancers following CAR T-cell administration appear to be a rare adverse event. However several cases documented in the last few years put the spotlight on this issue, which might have been underestimated so far, given the relatively recent deployment of CAR T-cell therapies. Furthermore, the initial successes obtained in hematological malignancies have not yet been replicated in solid tumors. It is now clear that further enhancements are needed to allow CAR T-cells to increase long-term persistence, overcome exhaustion and cope with the immunosuppressive tumor microenvironment. To this aim, a variety of genomic engineering strategies are under evaluation, most relying on CRISPR/Cas9 or other gene editing technologies. These approaches are liable to introduce unintended, irreversible genomic alterations in the product cells. In the first part of this review, we will discuss the viral and non-viral approaches used for the generation of CAR T-cells, whereas in the second part we will focus on gene editing and non-gene editing T-cell engineering, with particular regard to advantages, limitations, and safety. Finally, we will critically analyze the different gene deployment and genomic engineering combinations, delineating strategies with a superior safety profile for the production of next-generation CAR T-cell.


Asunto(s)
Edición Génica , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Linfocitos T , Humanos , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Edición Génica/métodos , Linfocitos T/inmunología , Animales , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/genética , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Ingeniería Genética , Sistemas CRISPR-Cas , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Microambiente Tumoral/inmunología
10.
Anal Chim Acta ; 1316: 342843, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969407

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are important non-coding RNA entities that affect gene expression and function by binding to target mRNAs, leading to degradation of the mRNAs or inhibiting their translation. MiRNAs are widely involved in a variety of biological processes, such as cell differentiation, development, metabolism, and apoptosis. In addition, miRNAs are associated with many diseases, including cancer. However, conventional detection techniques often suffer from shortcomings such as low sensitivity, so we need to develop a rapid and efficient detection strategy for accurate detection of miRNAs. RESULTS: We have developed an innovative homogeneous electrochemiluminescence (ECL) biosensor. This biosensor employs CRISPR/Cas12a gene editing technology for accurate and efficient detection of microRNA (miRNA). Compared to conventional technologies, this biosensor employs a unique homogeneous detection format that eliminates laborious probe fixation steps and greatly simplifies the detection process. By using two amplification techniques - isothermal amplification and T7 RNA polymerase amplification - the biosensor improves the sensitivity and specificity of the assay, providing excellent detection performance in the assay. This makes it possible to evaluate miRNA directly from a variety of biological samples such as cell lysates and diluted human serum. Experimental results convincingly demonstrate the extraordinary performance of this biosensor, including its extremely low detection limit of 1.27 aM, high sensitivity, reproducibility and stability. SIGNIFICANCE: The application of our constructed sensor in distinguishing between cancerous and non-cancerous cell lines highlights its potential for early cancer detection and monitoring. This innovative approach represents a major advancement in the field of miRNA detection, providing a user-friendly, cost-effective, and sensitive solution with broad implications for clinical diagnosis and patient care, especially in point-of-care settings.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Técnicas Electroquímicas , Mediciones Luminiscentes , MicroARNs , Humanos , Técnicas Biosensibles/métodos , MicroARNs/análisis , MicroARNs/sangre , MicroARNs/genética , Sistemas CRISPR-Cas/genética , Técnicas Electroquímicas/métodos , Límite de Detección , Proteínas Asociadas a CRISPR/genética , Proteínas Bacterianas , Endodesoxirribonucleasas
11.
Mol Cancer ; 23(1): 136, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965534

RESUMEN

BACKGROUND: BRAF inhibitors are widely employed in the treatment of melanoma with the BRAF V600E mutation. However, the development of resistance compromises their therapeutic efficacy. Diverse genomic and transcriptomic alterations are found in BRAF inhibitor resistant melanoma, posing a pressing need for convergent, druggable target that reverse therapy resistant tumor with different resistance mechanisms. METHODS: CRISPR-Cas9 screens were performed to identify novel target gene whose inhibition selectively targets A375VR, a BRAF V600E mutant cell line with acquired resistance to vemurafenib. Various in vitro and in vivo assays, including cell competition assay, water soluble tetrazolium (WST) assay, live-dead assay and xenograft assay were performed to confirm synergistic cell death. Liquid Chromatography-Mass Spectrometry analyses quantified polyamine biosynthesis and changes in proteome in vemurafenib resistant melanoma. EIF5A hypusination dependent protein translation and subsequent changes in mitochondrial biogenesis and activity were assayed by O-propargyl-puromycin labeling assay, mitotracker, mitoSOX labeling and seahorse assay. Bioinformatics analyses were used to identify the association of polyamine biosynthesis with BRAF inhibitor resistance and poor prognosis in melanoma patient cohorts. RESULTS: We elucidate the role of polyamine biosynthesis and its regulatory mechanisms in promoting BRAF inhibitor resistance. Leveraging CRISPR-Cas9 screens, we identify AMD1 (S-adenosylmethionine decarboxylase 1), a critical enzyme for polyamine biosynthesis, as a druggable target whose inhibition reduces vemurafenib resistance. Metabolomic and proteomic analyses reveal that polyamine biosynthesis is upregulated in vemurafenib-resistant cancer, resulting in enhanced EIF5A hypusination, translation of mitochondrial proteins and oxidative phosphorylation. We also identify that sustained c-Myc levels in vemurafenib-resistant cancer are responsible for elevated polyamine biosynthesis. Inhibition of polyamine biosynthesis or c-Myc reversed vemurafenib resistance both in vitro cell line models and in vivo in a xenograft model. Polyamine biosynthesis signature is associated with poor prognosis and shorter progression free survival after BRAF/MAPK inhibitor treatment in melanoma cohorts, highlighting the clinical relevance of our findings. CONCLUSIONS: Our findings delineate the molecular mechanisms involving polyamine-EIF5A hypusination-mitochondrial respiration pathway conferring BRAF inhibitor resistance in melanoma. These targets will serve as effective therapeutic targets that can maximize the therapeutic efficacy of existing BRAF inhibitors.


Asunto(s)
Resistencia a Antineoplásicos , Factor 5A Eucariótico de Iniciación de Traducción , Melanoma , Mutación , Factores de Iniciación de Péptidos , Poliaminas , Proteínas Proto-Oncogénicas B-raf , Proteínas de Unión al ARN , Vemurafenib , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Animales , Poliaminas/metabolismo , Ratones , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética , Línea Celular Tumoral , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Vemurafenib/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Sistemas CRISPR-Cas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Lisina/análogos & derivados
12.
Methods Mol Biol ; 2833: 23-33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38949697

RESUMEN

Mycobacterium tuberculosis is the main causative agent of tuberculosis (TB)-an ancient yet widespread global infectious disease to which 1.6 million people lost their lives in 2021. Antimicrobial resistance (AMR) has been an ongoing crisis for decades; 4.95 million deaths were associated with antibiotic resistance in 2019. While AMR is a multi-faceted problem, drug discovery is an urgent part of the solution and is at the forefront of modern research.The landscape of drug discovery for TB has undoubtedly been transformed by the development of high-throughput gene-silencing techniques that enable interrogation of every gene in the genome, and their relative contribution to fitness, virulence, and AMR. A recent advance in this area is CRISPR interference (CRISPRi). The application of this technique to antimicrobial susceptibility testing (AST) is the subject of ongoing research in basic science.CRISPRi technology can be used in conjunction with the high-throughput SPOT-culture growth inhibition assay (HT-SPOTi) to rapidly evaluate and assess gene essentiality including non-essential, conditionally essential (by using appropriate culture conditions), and essential genes. In addition, the HT-SPOTi method can develop drug susceptibility and drug resistance profiles.This technology is further useful for drug discovery groups who have designed target-based inhibitors rationally and wish to validate the primary mechanisms of their novel compounds' antibiotic action against the proposed target.


Asunto(s)
Descubrimiento de Drogas , Silenciador del Gen , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Pruebas de Sensibilidad Microbiana/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Descubrimiento de Drogas/métodos , Humanos , Sistemas CRISPR-Cas , Antituberculosos/farmacología , Antibacterianos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Farmacorresistencia Bacteriana/genética , Tuberculosis/microbiología , Tuberculosis/tratamiento farmacológico
13.
Funct Integr Genomics ; 24(4): 125, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995475

RESUMEN

MDS1 and EVI1 complex locus (MECOM), a transcription factor encoding several variants, has been implicated in progression of ovarian cancer. The function of regulatory regions in regulating MECOM expression in ovarian cancer is not fully understood. In this study, MECOM expression was evaluated in ovarian cancer cell lines treated with bromodomain and extraterminal (BET) inhibitor JQ-1. Oncogenic phenotypes were assayed using assays of CCK-8, colony formation, wound-healing and transwell. Oncogenic phenotypes were estimated in stable sgRNA-transfected OVCAR3 cell lines. Xenograft mouse model was assayed via subcutaneous injection of enhancer-deleted OVCAR3 cell lines. The results displayed that expression of MECOM is downregulated in cell lines treated with JQ-1. Data from published ChIP-sequencing (H3K27Ac) in 3 ovarian cancer cell lines displayed a potential enhancer around the first exon. mRNA and protein expression were downregulated in OVCAR3 cells after deletion of the MECOM enhancer. Similarly, oncogenic phenotypes both in cells and in the xenograft mouse model were significantly attenuated. This study demonstrates that JQ-1 can inhibit the expression of MECOM and tumorigenesis. Deletion of the enhancer activity of MECOM has an indispensable role in inhibiting ovarian cancer progress, which sheds light on a promising opportunity for ovarian cancer treatment through the application of this non-coding DNA deletion.


Asunto(s)
Azepinas , Sistemas CRISPR-Cas , Neoplasias Ováricas , Femenino , Humanos , Animales , Neoplasias Ováricas/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Ratones , Línea Celular Tumoral , Azepinas/farmacología , Elementos de Facilitación Genéticos , Triazoles/farmacología , Proteína del Locus del Complejo MDS1 y EV11/genética , Proteína del Locus del Complejo MDS1 y EV11/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor
14.
Nat Commun ; 15(1): 5687, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38971862

RESUMEN

Base editing (BE) faces protospacer adjacent motif (PAM) constraints and off-target effects in both eukaryotes and prokaryotes. For Streptomyces, renowned as one of the most prolific bacterial producers of antibiotics, the challenges are more pronounced due to its diverse genomic content and high GC content. Here, we develop a base editor named eSCBE3-NG-Hypa, tailored with both high efficiency and -fidelity for Streptomyces. Of note, eSCBE3-NG-Hypa recognizes NG PAM and exhibits high activity at challenging sites with high GC content or GC motifs, while displaying minimal off-target effects. To illustrate its practicability, we employ eSCBE3-NG-Hypa to achieve precise key amino acid conversion of the dehydratase (DH) domains within the modular polyketide synthase (PKS) responsible for the insecticide avermectins biosynthesis, achieving domains inactivation. The resulting DH-inactivated mutants, while ceasing avermectins production, produce a high yield of oligomycin, indicating competitive relationships among multiple biosynthetic gene clusters (BGCs) in Streptomyces avermitilis. Leveraging this insight, we use eSCBE3-NG-Hypa to introduce premature stop codons into competitor gene cluster of ave in an industrial S. avermitilis, with the mutant Δolm exhibiting the highest 4.45-fold increase in avermectin B1a compared to the control. This work provides a potent tool for modifying biosynthetic pathways and advancing metabolic engineering in Streptomyces.


Asunto(s)
Sistemas CRISPR-Cas , Citosina , Edición Génica , Sintasas Poliquetidas , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Edición Génica/métodos , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Citosina/metabolismo , Ivermectina/análogos & derivados , Ivermectina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Oligomicinas
15.
Front Cell Infect Microbiol ; 14: 1419209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975328

RESUMEN

As for many other organisms, CRISPR-Cas9 mediated genetic modification has gained increasing importance for the identification of vaccine candidates and drug targets in Neospora caninum, an apicomplexan parasite causing abortion in cattle and neuromuscular disease in dogs. A widely used approach for generating knock-out (KO) strains devoid of virulence factors is the integration of a drug selectable marker such as mutated dihydrofolate reductase-thymidylate synthase (mdhfr-ts) into the target gene, thus preventing the synthesis of respective protein and mediating resistance to pyrimethamine. However, CRISPR-Cas9 mutagenesis is not free of off-target effects, which can lead to integration of multiple mdhfr-ts copies into other sites of the genome. To determine the number of integrated mdhfr-ts in N. caninum, a duplex quantitative TaqMan PCR was developed. For this purpose, primers were designed that amplifies a 106 bp fragment from wild-type (WT) parasites corresponding to the single copy wtdhfrs-ts gene, as well as the mutated mdhfrs-ts present in KO parasites that confers resistance and were used simultaneously with primers amplifying the diagnostic NC5 gene. Thus, the dhfr-ts to NC5 ratio should be approximately 1 in WT parasites, while in KO parasites with a single integrated mdhrf-ts gene this ratio is doubled, and in case of multiple integration events even higher. This approach was applied to the Neospora KO strains NcΔGRA7 and NcΔROP40. For NcΔGRA7, the number of tachyzoites determined by dhfr-ts quantification was twice the number of tachyzoites determined by NC5 quantification, thus indicating that only one mdhfr-ts copy was integrated. The results obtained with the NcΔROP40 strain, however, showed that the number of dhfr-ts copies per genome was substantially higher, indicating that at least three copies of the selectable mdhfr-ts marker were integrated into the genomic DNA during gene editing by CRISPR-Cas9. This duplex TaqMan-qPCR provides a reliable and easy-to-use tool for assessing CRISPR-Cas9 mediated mutagenesis in WT N. caninum strains.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Neospora , Tetrahidrofolato Deshidrogenasa , Timidilato Sintasa , Tetrahidrofolato Deshidrogenasa/genética , Neospora/genética , Timidilato Sintasa/genética , Animales , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Resistencia a Medicamentos/genética , Edición Génica/métodos , Coccidiosis/parasitología , Complejos Multienzimáticos
16.
Methods Mol Biol ; 2830: 149-161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977576

RESUMEN

Transgenesis technologies, such as overexpression or RNA interference-mediated suppression, have often been used to alter the activity of target genes. More recently developed targeted genome modification methods using customizable endonucleases allow for the regulation or knockout mutation of target genes without the necessity of integrating recombinant DNA. Such approaches make it possible to create novel alleles of target genes, thereby significantly contributing to crop improvement. Among these technologies, the Cas9 endonuclease-based method is widely applied to several crops, including barley (Hordeum vulgare). In this chapter, we describe an Agrobacterium-based approach to the targeted modification of grain dormancy genes in barley using RNA-guided Cas9 nuclease.


Asunto(s)
Sistemas CRISPR-Cas , Hordeum , Latencia en las Plantas , Hordeum/genética , Latencia en las Plantas/genética , Plantas Modificadas Genéticamente/genética , Edición Génica/métodos , Agrobacterium/genética , ARN Guía de Sistemas CRISPR-Cas/genética , Genes de Plantas
17.
Methods Mol Biol ; 2830: 163-171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977577

RESUMEN

Dependency on in vitro culture and regeneration limits the ability to use genome editing on elite wheat (Triticum aestivum L.) varieties. We recently developed an in planta particle bombardment (iPB) technique for gene editing in wheat that utilizes shoot apical meristems (SAMs) as a target tissue. Since the method does not require in vitro culture, it can therefore be used on recalcitrant varieties. In this chapter, we describe in detail the steps used in the iPB method. With this protocol, 3% to 5% of T0 plants grown from bombarded SAMs typically carry mutant alleles and approximately 1% to 2% of the T0 plants inherit mutant alleles in the next generation.


Asunto(s)
Edición Génica , Latencia en las Plantas , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Edición Génica/métodos , Latencia en las Plantas/genética , Genoma de Planta , Plantas Modificadas Genéticamente/genética , Meristema/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Sistemas CRISPR-Cas
18.
Methods Mol Biol ; 2830: 137-148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977575

RESUMEN

Knockout mutants provide definitive information about the functions of genes related to agronomic traits, including seed dormancy. However, it takes many years to produce knockout mutants using conventional techniques in polyploid plants such as hexaploid wheat. Genome editing with sequence-specific nucleases is a promising approach for obtaining knockout mutations in all targeted homoeologs of wheat simultaneously. Here, we describe a procedure to produce a triple recessive mutant in wheat via genome editing. This protocol covers the evaluation of gRNA and Agrobacterium-mediated transformation to obtain edited wheat seedlings.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Técnicas de Inactivación de Genes , Latencia en las Plantas , Triticum , Triticum/genética , Edición Génica/métodos , Latencia en las Plantas/genética , Técnicas de Inactivación de Genes/métodos , Mutación , Plantas Modificadas Genéticamente/genética , Genoma de Planta , ARN Guía de Sistemas CRISPR-Cas/genética , Semillas/genética , Genes de Plantas , Agrobacterium/genética , Plantones/genética
19.
Front Cell Infect Microbiol ; 14: 1362513, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994004

RESUMEN

The bacterium Klebsiella pneumoniae (Kp) was the primary pathogen of hospital-acquired infection, but the current detection method could not rapidly and conveniently identify Kp. Recombinase polymerase amplification (RPA) was a fast and convenient isothermal amplification technology, and the clustered regularly interspaced short palindromic repeats (CRISPR) system could rapidly amplify the signal of RPA and improve its limit of detection (LOD). In this study, we designed three pairs of RPA primers for the rcsA gene of Kp, amplified the RPA signal through single-strand DNA reporter cleavage by CRISPR/Cas12a, and finally analyzed the cleavage signal using fluorescence detection (FD) and lateral flow test strips (LFTS). Our results indicated that the RPA-CRISPR/Cas12a platform could specifically identify Kp from eleven common clinical pathogens. The LOD of FD and LFTS were 1 fg/µL and 10 fg/µL, respectively. In clinical sample testing, the RPA-CRISPR/Cas12a platform was consistent with the culture method and qPCR method, and its sensitivity and specificity were 100% (16/16) and 100% (9/9), respectively. With the advantages of detection speed, simplicity, and accuracy, the RPA-CRISPR/Cas12a platform was expected to be a convenient tool for the early clinical detection of Kp.


Asunto(s)
Sistemas CRISPR-Cas , Klebsiella pneumoniae , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , Infecciones por Klebsiella/diagnóstico , Infecciones por Klebsiella/microbiología , Recombinasas/metabolismo , Recombinasas/genética , Técnicas de Diagnóstico Molecular/métodos , Proteínas Bacterianas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteínas Asociadas a CRISPR/genética , ADN Bacteriano/genética , Endodesoxirribonucleasas
20.
Front Cell Infect Microbiol ; 14: 1410115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994001

RESUMEN

Antibiotic resistance, a known global health challenge, involves the flow of bacteria and their genes among animals, humans, and their surrounding environment. It occurs when bacteria evolve and become less responsive to the drugs designated to kill them, making infections harder to treat. Despite several obstacles preventing the spread of genes and bacteria, pathogens regularly acquire novel resistance factors from other species, which reduces their ability to prevent and treat such bacterial infections. This issue requires coordinated efforts in healthcare, research, and public awareness to address its impact on human health worldwide. This review outlines how recent advances in gene editing technology, especially CRISPR/Cas9, unveil a breakthrough in combating antibiotic resistance. Our focus will remain on the relationship between CRISPR/cas9 and its impact on antibiotic resistance and its related infections. Moreover, the prospects of this new advanced research and the challenges of adopting these technologies against infections will be outlined by exploring its different derivatives and discussing their advantages and limitations over others, thereby providing a corresponding reference for the control and prevention of the spread of antibiotic resistance.


Asunto(s)
Antibacterianos , Bacterias , Infecciones Bacterianas , Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Humanos , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/tratamiento farmacológico , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Microbiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...