Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 498
Filtrar
1.
Nutrients ; 16(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999819

RESUMEN

Major depressive disorder (MDD) is a prevalent mental illness globally, yet its etiology remains largely elusive. Recent interest in the scientific community has focused on the correlation between the disruption of iron homeostasis and MDD. Prior studies have revealed anomalous levels of iron in both peripheral blood and the brain of MDD patients; however, these findings are not consistent. This study involved 95 MDD patients aged 18-35 and 66 sex- and age-matched healthy controls (HCs) who underwent 3D-T1 and quantitative susceptibility mapping (QSM) sequence scans to assess grey matter volume (GMV) and brain iron concentration, respectively. Plasma ferritin (pF) levels were measured in a subset of 49 MDD individuals and 41 HCs using the Enzyme-linked immunosorbent assay (ELISA), whose blood data were simultaneously collected. We hypothesize that morphological brain changes in MDD patients are related to abnormal regulation of iron levels in the brain and periphery. Multimodal canonical correlation analysis plus joint independent component analysis (MCCA+jICA) algorithm was mainly used to investigate the covariation patterns between the brain iron concentration and GMV. The results of "MCCA+jICA" showed that the QSM values in bilateral globus pallidus and caudate nucleus of MDD patients were lower than HCs. While in the bilateral thalamus and putamen, the QSM values in MDD patients were higher than in HCs. The GMV values of these brain regions showed a significant positive correlation with QSM. The GMV values of bilateral putamen were found to be increased in MDD patients compared with HCs. A small portion of the thalamus showed reduced GMV values in MDD patients compared to HCs. Furthermore, the region of interest (ROI)-based comparison results in the basal ganglia structures align with the outcomes obtained from the "MCCA+jICA" analysis. The ELISA results indicated that the levels of pF in MDD patients were higher than those in HCs. Correlation analysis revealed that the increase in pF was positively correlated with the iron content in the left thalamus. Finally, the covariation patterns obtained from "MCCA+jICA" analysis as classification features effectively differentiated MDD patients from HCs in the support vector machine (SVM) model. Our findings indicate that elevated peripheral ferritin in MDD patients may disrupt the normal metabolism of iron in the brain, leading to abnormal changes in brain iron levels and GMV.


Asunto(s)
Trastorno Depresivo Mayor , Ferritinas , Sustancia Gris , Hierro , Imagen por Resonancia Magnética , Humanos , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/patología , Sustancia Gris/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Hierro/metabolismo , Hierro/análisis , Adulto , Masculino , Femenino , Adulto Joven , Ferritinas/sangre , Adolescente , Encéfalo/patología , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Estudios de Casos y Controles
2.
Hum Brain Mapp ; 45(11): e26785, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39031470

RESUMEN

Cyclic fluctuations in hypothalamic-pituitary-gonadal axis (HPG-axis) hormones exert powerful behavioral, structural, and functional effects through actions on the mammalian central nervous system. Yet, very little is known about how these fluctuations alter the structural nodes and information highways of the human brain. In a study of 30 naturally cycling women, we employed multidimensional diffusion and T1-weighted imaging during three estimated menstrual cycle phases (menses, ovulation, and mid-luteal) to investigate whether HPG-axis hormone concentrations co-fluctuate with alterations in white matter (WM) microstructure, cortical thickness (CT), and brain volume. Across the whole brain, 17ß-estradiol and luteinizing hormone (LH) concentrations were directly proportional to diffusion anisotropy (µFA; 17ß-estradiol: ß1 = 0.145, highest density interval (HDI) = [0.211, 0.4]; LH: ß1 = 0.111, HDI = [0.157, 0.364]), while follicle-stimulating hormone (FSH) was directly proportional to CT (ß1 = 0 .162, HDI = [0.115, 0.678]). Within several individual regions, FSH and progesterone demonstrated opposing relationships with mean diffusivity (Diso) and CT. These regions mainly reside within the temporal and occipital lobes, with functional implications for the limbic and visual systems. Finally, progesterone was associated with increased tissue (ß1 = 0.66, HDI = [0.607, 15.845]) and decreased cerebrospinal fluid (CSF; ß1 = -0.749, HDI = [-11.604, -0.903]) volumes, with total brain volume remaining unchanged. These results are the first to report simultaneous brain-wide changes in human WM microstructure and CT coinciding with menstrual cycle-driven hormone rhythms. Effects were observed in both classically known HPG-axis receptor-dense regions (medial temporal lobe, prefrontal cortex) and in other regions located across frontal, occipital, temporal, and parietal lobes. Our results suggest that HPG-axis hormone fluctuations may have significant structural impacts across the entire brain.


Asunto(s)
Encéfalo , Estradiol , Sustancia Gris , Hormona Luteinizante , Ciclo Menstrual , Sustancia Blanca , Humanos , Femenino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/metabolismo , Adulto , Ciclo Menstrual/fisiología , Estradiol/sangre , Adulto Joven , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Hormona Luteinizante/sangre , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Hormona Folículo Estimulante/sangre , Progesterona/sangre , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética
3.
Neurology ; 103(2): e209498, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38885485

RESUMEN

BACKGROUND AND OBJECTIVES: Cognitive impairment is a frequent nonmotor symptom in patients with Parkinson disease (PD), and early cognitive decline is often attributed to dopaminergic system dysfunction. We aimed to explore spatiotemporal progression patterns of striatal dopamine availability and regional brain volume based on cognitive status among patients with PD. METHODS: This retrospective, cross-sectional study included patients with newly diagnosed PD who were not taking medication for this condition who visited a university-affiliated hospital in Seoul between January 2018 and December 2020. Patients were classified as having normal cognition (PD-NC), mild cognitive impairment (PD-MCI), or PD dementia (PDD) based on Seoul Neuropsychological Screening Battery-II, which includes 31 subsets covering activities of daily living and 5 cognitive domains. They all had brain imaging with MRI and PET with 18F-N-(3-fluoropropyl)-2beta-carbon ethoxy-3beta-(4-iodophenyl) nortropane at baseline. Subsequently, standardized uptake value ratios (SUVRs) for regional dopamine availability and regional gray matter volumes were obtained using automated segmentation. These metrics were compared across cognitive status groups, and spatiotemporal progression patterns were analyzed using the Subtype and Stage Inference machine learning technique. RESULTS: Among 168 patients (mean age, 73.3 ± 6.1 years; 81 [48.2%] women), 65 had PD-NC, 65 had PD-MCI, and 38 had PDD. Patients with PD-MCI exhibited lower SUVRs (3.61 ± 1.31, p < 0.001) in the caudate than patients with PD-NC (4.43 ± 1.21) but higher SUVRs than patients with PDD (2.39 ± 1.06). Patients with PD-NC had higher thalamic SUVRs (1.55 ± 0.16, p < 0.001) than patients with both PD-MCI (1.45 ± 0.16) and PDD (1.38 ± 0.19). Regional deep gray matter volumes of the caudate (p = 0.015), putamen (p = 0.012), globus pallidus (p < 0.001), thalamus (p < 0.001), hippocampus (p < 0.001), and amygdala (p < 0.001) were more reduced in patients with PD-MCI or PDD than in patients with PD-NC, and the SUVR of the caudate correlated with caudate volume (r = 0.187, p = 0.015). Hippocampal atrophy was the initial change influencing cognitive impairment. The reduced dopamine availability of the thalamus preceded reductions in volume across most deep gray matter regions. DISCUSSION: Our finding underscores the association between decreased dopamine availability and volume of the caudate and thalamus with cognitive dysfunction in PD. The dopamine availability of the caudate and thalamus was reduced before the volume of the caudate and thalamus was decreased, highlighting the spatiotemporal association between dopaminergic and structural pathology in cognitive impairment in PD.


Asunto(s)
Disfunción Cognitiva , Progresión de la Enfermedad , Dopamina , Sustancia Gris , Enfermedad de Parkinson , Tomografía de Emisión de Positrones , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Masculino , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/metabolismo , Anciano , Estudios Transversales , Estudios Retrospectivos , Persona de Mediana Edad , Dopamina/metabolismo , Imagen por Resonancia Magnética
4.
Sci Rep ; 14(1): 12724, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830861

RESUMEN

Evidence has shown that both sleep loss and daily caffeine intake can induce changes in grey matter (GM). Caffeine is frequently used to combat sleepiness and impaired performance caused by insufficient sleep. It is unclear (1) whether daily use of caffeine could prevent or exacerbate the GM alterations induced by 5-day sleep restriction (i.e. chronic sleep restriction, CSR), and (2) whether the potential impact on GM plasticity depends on individual differences in the availability of adenosine receptors, which are involved in mediating effects of caffeine on sleep and waking function. Thirty-six healthy adults participated in this double-blind, randomized, controlled study (age = 28.9 ± 5.2 y/; F:M = 15:21; habitual level of caffeine intake < 450 mg; 29 homozygous C/C allele carriers of rs5751876 of ADORA2A, an A2A adenosine receptor gene variant). Each participant underwent a 9-day laboratory visit consisting of one adaptation day, 2 baseline days (BL), 5-day sleep restriction (5 h time-in-bed), and a recovery day (REC) after an 8-h sleep opportunity. Nineteen participants received 300 mg caffeine in coffee through the 5 days of CSR (CAFF group), while 17 matched participants received decaffeinated coffee (DECAF group). We examined GM changes on the 2nd BL Day, 5th CSR Day, and REC Day using magnetic resonance imaging and voxel-based morphometry. Moreover, we used positron emission tomography with [18F]-CPFPX to quantify the baseline availability of A1 adenosine receptors (A1R) and its relation to the GM plasticity. The results from the voxel-wise multimodal whole-brain analysis on the Jacobian-modulated T1-weighted images controlled for variances of cerebral blood flow indicated a significant interaction effect between caffeine and CSR in four brain regions: (a) right temporal-occipital region, (b) right dorsomedial prefrontal cortex (DmPFC), (c) left dorsolateral prefrontal cortex (DLPFC), and (d) right thalamus. The post-hoc analyses on the signal intensity of these GM clusters indicated that, compared to BL, GM on the CSR day was increased in the DECAF group in all clusters  but decreased in the thalamus, DmPFC, and DLPFC in the CAFF group. Furthermore, lower baseline subcortical A1R availability predicted a larger GM reduction in the CAFF group after CSR of all brain regions except for the thalamus. In conclusion, our data suggest an adaptive GM upregulation after 5-day CSR, while concomitant use of caffeine instead leads to a GM reduction. The lack of consistent association with individual A1R availability may suggest that CSR and caffeine affect thalamic GM plasticity predominantly by a different mechanism. Future studies on the role of adenosine A2A receptors in CSR-induced GM plasticity are warranted.


Asunto(s)
Cafeína , Sustancia Gris , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Receptor de Adenosina A1 , Privación de Sueño , Humanos , Cafeína/administración & dosificación , Cafeína/farmacología , Masculino , Adulto , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Sustancia Gris/efectos de los fármacos , Sustancia Gris/patología , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A1/genética , Tomografía de Emisión de Positrones/métodos , Femenino , Imagen por Resonancia Magnética/métodos , Método Doble Ciego , Privación de Sueño/metabolismo , Privación de Sueño/diagnóstico por imagen , Adulto Joven , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2A/genética
5.
Magn Reson Med ; 92(3): 926-944, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38725389

RESUMEN

PURPOSE: Demonstrate the feasibility and evaluate the performance of single-shot diffusion trace-weighted radial echo planar spectroscopic imaging (Trace DW-REPSI) for quantifying the trace ADC in phantom and in vivo using a 3T clinical scanner. THEORY AND METHODS: Trace DW-REPSI datasets were acquired in 10 phantom and 10 healthy volunteers, with a maximum b-value of 1601 s/mm2 and diffusion time of 10.75 ms. The self-navigation properties of radial acquisitions were used for corrections of shot-to-shot phase and frequency shift fluctuations of the raw data. In vivo trace ADCs of total NAA (tNAA), total creatine (tCr), and total choline (tCho) extrapolated to pure gray and white matter fractions were compared, as well as trace ADCs estimated in voxels within white or gray matter-dominant regions. RESULTS: Trace ADCs in phantom show excellent agreement with reported values, and in vivo ADCs agree well with the expected differences between gray and white matter. For tNAA, tCr, and tCho, the trace ADCs extrapolated to pure gray and white matter ranged from 0.18-0.27 and 0.26-0.38 µm2/ms, respectively. In sets of gray and white matter-dominant voxels, the values ranged from 0.21 to 0.27 and 0.24 to 0.31 µm2/ms, respectively. The overestimated trace ADCs from this sequence can be attributed to the short diffusion time. CONCLUSION: This study presents the first demonstration of the single-shot diffusion trace-weighted spectroscopic imaging sequence using radial echo planar trajectories. The Trace DW-REPSI sequence could provide an estimate of the trace ADC in a much shorter scan time compared to conventional approaches that require three separate measurements.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Imagen Eco-Planar , Fantasmas de Imagen , Humanos , Imagen Eco-Planar/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Masculino , Femenino , Colina/metabolismo , Sustancia Blanca/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Voluntarios Sanos , Creatina/metabolismo , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Algoritmos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Espectroscopía de Resonancia Magnética/métodos
6.
Neurobiol Dis ; 197: 106539, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38789058

RESUMEN

BACKGROUND: Iron overload is observed in neurodegenerative diseases, especially Alzheimer's disease (AD) and Parkinson's disease (PD). Homozygotes for the iron-overload (haemochromatosis) causing HFE p.C282Y variant have increased risk of dementia and PD. Whether brain iron deposition is causal or secondary to the neurodegenerative processes in the general population is unclear. METHODS: We analysed 39,533 UK Biobank participants of European genetic ancestry with brain MRI data. We studied brain iron estimated by R2* and quantitative susceptibility mapping (QSM) in 8 subcortical regions: accumbens, amygdala, caudate, hippocampus, pallidum, putamen, substantia nigra, and thalamus. We performed genome-wide associations studies (GWAS) and used Mendelian Randomization (MR) methods to estimate the causal effect of brain iron on grey matter volume, and risk of AD, non-AD and PD. We also used MR to test whether genetic liability to AD or PD causally increased brain iron (R2* and QSM). FINDINGS: In GWAS of R2* and QSM we replicated 83% of previously reported genetic loci and identified 174 further loci across all eight brain regions. Higher genetically predicted brain iron, using both R2* and QSM, was associated with lower grey matter volumes in the caudate, putamen and thalamus (e.g., Beta-putamenQSM: -0.37, p = 2*10-46). Higher genetically predicted thalamus R2* was associated with increased risk of non-AD dementia (OR 1.36(1.16;1.60), p = 2*10-4) but not AD (p > 0.05). In males, genetically predicted putamen R2* increased non-AD dementia risk, but not in females. Higher genetically predicted iron in the caudate, putamen, and substantia nigra was associated with an increased risk of PD (Odds Ratio QSM âˆ¼ substantia-nigra 1.21(1.07;1.37), p = 0.003). Genetic liability to AD or PD was not associated with R2* or QSM in the dementia or PD-associated regions. INTERPRETATION: Our genetic analysis supports a causal effect of higher iron deposition in specific subcortical brain regions for Parkinson's disease, grey matter volume, and non-Alzheimer's dementia.


Asunto(s)
Demencia , Estudio de Asociación del Genoma Completo , Sustancia Gris , Hierro , Imagen por Resonancia Magnética , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/diagnóstico por imagen , Masculino , Demencia/genética , Demencia/patología , Demencia/diagnóstico por imagen , Femenino , Hierro/metabolismo , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/metabolismo , Reino Unido/epidemiología , Anciano , Persona de Mediana Edad , Estudios de Cohortes , Bancos de Muestras Biológicas , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Biobanco del Reino Unido
7.
Mov Disord ; 39(7): 1166-1178, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38671545

RESUMEN

BACKGROUND/OBJECTIVE: The corticobasal syndrome (CBS) is a complex asymmetric movement disorder, with cognitive impairment. Although commonly associated with the primary 4-repeat-tauopathy of corticobasal degeneration, clinicopathological correlation is poor, and a significant proportion is due to Alzheimer's disease (AD). Synaptic loss is a pathological feature of many clinical and preclinical tauopathies. We therefore measured the degree of synaptic loss in patients with CBS and tested whether synaptic loss differed according to ß-amyloid status. METHODS: Twenty-five people with CBS, and 32 age-/sex-/education-matched healthy controls participated. Regional synaptic density was estimated by [11C]UCB-J non-displaceable binding potential (BPND), AD-tau pathology by [18F]AV-1451 BPND, and gray matter volume by T1-weighted magnetic resonance imaging. Participants with CBS had ß-amyloid imaging with 11C-labeled Pittsburgh Compound-B ([11C]PiB) positron emission tomography. Symptom severity was assessed with the progressive supranuclear palsy-rating-scale, the cortical basal ganglia functional scale, and the revised Addenbrooke's Cognitive Examination. Regional differences in BPND and gray matter volume between groups were assessed by ANOVA. RESULTS: Compared to controls, patients with CBS had higher [18F]AV-1451 uptake, gray matter volume loss, and reduced synaptic density. Synaptic loss was more severe and widespread in the ß-amyloid negative group. Asymmetry of synaptic loss was in line with the clinically most affected side. DISCUSSION: Distinct patterns of [11C]UCB-J and [18F]AV-1451 binding and gray matter volume loss, indicate differences in the pathogenic mechanisms of CBS according to whether it is associated with the presence of Alzheimer's disease or not. This highlights the potential for different therapeutic strategies in CBSs. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Péptidos beta-Amiloides , Tomografía de Emisión de Positrones , Sinapsis , Humanos , Masculino , Femenino , Anciano , Péptidos beta-Amiloides/metabolismo , Persona de Mediana Edad , Sinapsis/patología , Sinapsis/metabolismo , Degeneración Corticobasal/patología , Degeneración Corticobasal/metabolismo , Degeneración Corticobasal/diagnóstico por imagen , Proteínas tau/metabolismo , Imagen por Resonancia Magnética , Sustancia Gris/patología , Sustancia Gris/metabolismo , Sustancia Gris/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/diagnóstico por imagen , Carbolinas
8.
Hum Brain Mapp ; 45(6): e26686, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38647048

RESUMEN

Deuterium metabolic imaging (DMI) is an emerging magnetic resonance technique, for non-invasive mapping of human brain glucose metabolism following oral or intravenous administration of deuterium-labeled glucose. Regional differences in glucose metabolism can be observed in various brain pathologies, such as Alzheimer's disease, cancer, epilepsy or schizophrenia, but the achievable spatial resolution of conventional phase-encoded DMI methods is limited due to prolonged acquisition times rendering submilliliter isotropic spatial resolution for dynamic whole brain DMI not feasible. The purpose of this study was to implement non-Cartesian spatial-spectral sampling schemes for whole-brain 2H FID-MR Spectroscopic Imaging to assess time-resolved metabolic maps with sufficient spatial resolution to reliably detect metabolic differences between healthy gray and white matter regions. Results were compared with lower-resolution DMI maps, conventionally acquired within the same session. Six healthy volunteers (4 m/2 f) were scanned for ~90 min after administration of 0.8 g/kg oral [6,6']-2H glucose. Time-resolved whole brain 2H FID-DMI maps of glucose (Glc) and glutamate + glutamine (Glx) were acquired with 0.75 and 2 mL isotropic spatial resolution using density-weighted concentric ring trajectory (CRT) and conventional phase encoding (PE) readout, respectively, at 7 T. To minimize the effect of decreased signal-to-noise ratios associated with smaller voxels, low-rank denoising of the spatiotemporal data was performed during reconstruction. Sixty-three minutes after oral tracer uptake three-dimensional (3D) CRT-DMI maps featured 19% higher (p = .006) deuterium-labeled Glc concentrations in GM (1.98 ± 0.43 mM) compared with WM (1.66 ± 0.36 mM) dominated regions, across all volunteers. Similarly, 48% higher (p = .01) 2H-Glx concentrations were observed in GM (2.21 ± 0.44 mM) compared with WM (1.49 ± 0.20 mM). Low-resolution PE-DMI maps acquired 70 min after tracer uptake featured smaller regional differences between GM- and WM-dominated areas for 2H-Glc concentrations with 2.00 ± 0.35 mM and 1.71 ± 0.31 mM, respectively (+16%; p = .045), while no regional differences were observed for 2H-Glx concentrations. In this study, we successfully implemented 3D FID-MRSI with fast CRT encoding for dynamic whole-brain DMI at 7 T with 2.5-fold increased spatial resolution compared with conventional whole-brain phase encoded (PE) DMI to visualize regional metabolic differences. The faster metabolic activity represented by 48% higher Glx concentrations was observed in GM- compared with WM-dominated regions, which could not be reproduced using whole-brain DMI with the low spatial resolution protocol. Improved assessment of regional pathologic alterations using a fully non-invasive imaging method is of high clinical relevance and could push DMI one step toward clinical applications.


Asunto(s)
Encéfalo , Deuterio , Glucosa , Humanos , Glucosa/metabolismo , Adulto , Masculino , Femenino , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Imagen por Resonancia Magnética/métodos , Adulto Joven , Espectroscopía de Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/metabolismo
9.
J Alzheimers Dis ; 99(1): 279-290, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38669532

RESUMEN

Background: Impaired glymphatic flow on the Alzheimer's disease (AD) spectrum may be evaluated using diffusion tensor image analysis along the perivascular space (DTI-ALPS). Objective: We aimed to validate impaired glymphatic flow and explore its association with gray matter volume, cognitive status, and cerebral amyloid deposition on the AD spectrum. Methods: 80 participants (mean age, 76.9±8.5 years; 57 women) with AD (n = 65) and cognitively normal (CN) (n = 15) who underwent 3T brain MRI including DTI and/or amyloid PET were included. After adjusting for age, sex, apolipoprotein E status, and burden of white matter hyperintensities, the ALPS-index was compared according to the AD spectrum. The association between the ALPS-index and gray matter volume, cognitive status, and quantitative amyloid from PET was assessed. Results: The ALPS-index in the AD was significantly lower (mean, 1.476; 95% CI, 1.395-1.556) than in the CN (1.784;1.615-1.952; p = 0.026). Volumes of the entorhinal cortex, hippocampus, temporal pole, and primary motor cortex showed significant associations with the ALPS-index (all, p < 0.05). There was a positive correlation between the ALPS-index and MMSE score (partial r = 0.435; p < 0.001), but there was no significant correlation between the ALPS-index and amyloid SUVRs (all, p > 0.05). Conclusions: Decreased glymphatic flow measured by DTI-ALPS in AD may serve as a marker of neurodegeneration correlating with structural atrophy and cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Imagen de Difusión Tensora , Sistema Glinfático , Sustancia Gris , Tomografía de Emisión de Positrones , Humanos , Femenino , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Anciano , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/metabolismo , Sistema Glinfático/diagnóstico por imagen , Sistema Glinfático/patología , Sistema Glinfático/metabolismo , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/metabolismo
10.
Acta Neuropathol Commun ; 12(1): 45, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509621

RESUMEN

Interactions between extracellular matrix (ECM) proteins and ß1 integrins play an essential role maintaining vascular integrity in the brain, particularly under vascular remodeling conditions. As blood vessels in the spinal cord are reported to have distinct properties from those in the brain, here we examined the impact of ß1 integrin inhibition on spinal cord vascular integrity, both under normoxic conditions, when blood vessels are stable, and during exposure to chronic mild hypoxia (CMH), when extensive vascular remodeling occurs. We found that a function-blocking ß1 integrin antibody triggered a small degree of vascular disruption in the spinal cord under normoxic conditions, but under hypoxic conditions, it greatly enhanced (20-fold) vascular disruption, preferentially in spinal cord white matter (WM). This resulted in elevated microglial activation as well as marked loss of myelin integrity and reduced density of oligodendroglial cells. To understand why vascular breakdown is localized to WM, we compared expression levels of major BBB components of WM and grey matter (GM) blood vessels, but this revealed no obvious differences. Interestingly however, hypoxyprobe staining demonstrated that the most severe levels of spinal cord hypoxia induced by CMH occurred in the WM. Analysis of brain tissue revealed a similar preferential vulnerability of WM tracts to show vascular disruption under these conditions. Taken together, these findings demonstrate an essential role for ß1 integrins in maintaining vascular integrity in the spinal cord, and unexpectedly, reveal a novel and fundamental difference between WM and GM blood vessels in their dependence on ß1 integrin function during hypoxic exposure. Our data support the concept that the preferential WM vulnerability described may be less a result of intrinsic differences in vascular barrier properties between WM and GM, and more a consequence of differences in vascular density and architecture.


Asunto(s)
Sustancia Blanca , Humanos , Sustancia Blanca/metabolismo , Integrina beta1/metabolismo , Remodelación Vascular/fisiología , Médula Espinal/metabolismo , Sustancia Gris/metabolismo , Hipoxia/metabolismo
11.
Ann Neurol ; 95(5): 907-916, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38345145

RESUMEN

OBJECTIVE: Microglia/macrophages line the border of demyelinated lesions in both cerebral white matter and the cortex in the brains of multiple sclerosis patients. Microglia/macrophages associated with chronic white matter lesions are thought to be responsible for slow lesion expansion and disability progression in progressive multiple sclerosis, whereas those lining gray matter lesions are less studied. Profiling these microglia/macrophages could help to focus therapies on genes or pathways specific to lesion expansion and disease progression. METHODS: We compared the morphology and transcript profiles of microglia/macrophages associated with borders of white matter (WM line) and subpial gray matter lesions (GM line) using laser capture microscopy. We performed RNA sequencing on isolated cells followed by immunocytochemistry to determine the distribution of translational products of transcripts increased in WM line microglia. RESULTS: Cells in the WM line appear activated, with shorter processes and larger cell bodies, whereas those in the GM line appear more homeostatic, with smaller cell bodies and multiple thin processes. Transcript profiling revealed 176 genes in WM lines and 111 genes in GM lines as differentially expressed. Transcripts associated with immune activation and iron homeostasis were increased in WM line microglia, whereas genes belonging to the canonical Wnt signaling pathway were increased in GM line microglia. INTERPRETATION: We propose that the mechanisms of demyelination and dynamics of lesion expansion are responsible for differential transcript expression in WM lines and GM lines, and posit that increased expression of the Fc epsilon receptor, spleen tyrosine kinase, and Bruton's tyrosine kinase, play a key role in regulating microglia/macrophage function at the border of chronic active white matter lesions. ANN NEUROL 2024;95:907-916.


Asunto(s)
Sustancia Gris , Macrófagos , Microglía , Esclerosis Múltiple , Sustancia Blanca , Humanos , Microglía/metabolismo , Microglía/patología , Macrófagos/metabolismo , Macrófagos/patología , Sustancia Gris/patología , Sustancia Gris/metabolismo , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Masculino , Femenino , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Persona de Mediana Edad , Transcriptoma , Adulto , Anciano
12.
Neuroimage ; 286: 120511, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184158

RESUMEN

GABA+ and Glx (glutamate and glutamine) are widely studied metabolites, yet the commonly used magnetic resonance spectroscopy (MRS) techniques have significant limitations, including sensitivity to B0 and B1+-inhomogeneities, limited bandwidth of MEGA-pulses, high SAR which is accentuated at 7T. To address these limitations, we propose SLOW-EPSI method, employing a large 3D MRSI coverage and achieving a high resolution down to 0.26 ml. Simulation results demonstrate the robustness of SLOW-editing for both GABA+ and Glx against B0 and B1+-inhomogeneities within the range of [-0.3, +0.3] ppm and [40 %, 250 %], respectively. Two protocols, both utilizing a 70 mm thick FOV slab, were employed to target distinct brain regions in vivo, differentiated by their orientation: transverse and tilted. Protocol 1 (n = 11) encompassed 5 locations (cortical gray matter, white matter, frontal lobe, parietal lobe, and cingulate gyrus). Protocol 2 (n = 5) involved 9 locations (cortical gray matter, white matter, frontal lobe, occipital lobe, cingulate gyrus, caudate nucleus, hippocampus, putamen, and inferior thalamus). Quantitative analysis of GABA+ and Glx was conducted in a stepwise manner. First, B1+/B1--inhomogeneities were corrected using water reference data. Next, GABA+ and Glx values were calculated employing spectral fitting. Finally, the GABA+ level for each selected region was compared to the global Glx within the same subject, generating the GABA+/Glx_global ratio. Our findings from two protocols indicate that the GABA+/Glx_global level in cortical gray matter was approximately 16 % higher than in white matter. Elevated GABA+/Glx_global levels acquired with protocol 2 were observed in specific regions such as the caudate nucleus (0.118±0.067), putamen (0.108±0.023), thalamus (0.092±0.036), and occipital cortex (0.091±0.010), when compared to the cortical gray matter (0.079±0.012). Overall, our results highlight the effectiveness of SLOW-EPSI as a robust and efficient technique for accurate measurements of GABA+ and Glx at 7T. In contrast to previous SVS and 2D-MRSI based editing sequences with which only one or a limited number of brain regions can be measured simultaneously, the method presented here measures GABA+ and Glx from any brain area and any arbitrarily shaped volume that can be flexibly selected after the examination. Quantification of GABA+ and Glx across multiple brain regions through spectral fitting is achievable with a 9-minute acquisition. Additionally, acquisition times of 18-27 min (GABA+) and 9-18 min (Glx) are required to generate 3D maps, which are constructed using Gaussian fitting and peak integration.


Asunto(s)
Encéfalo , Sustancia Gris , Humanos , Espectroscopía de Resonancia Magnética/métodos , Encéfalo/metabolismo , Sustancia Gris/metabolismo , Ácido Glutámico/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Imagen por Resonancia Magnética/métodos
13.
J Cereb Blood Flow Metab ; 44(7): 1184-1198, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38289876

RESUMEN

Quantitative BOLD (qBOLD) MRI allows evaluation of oxidative metabolism of the brain based purely on an endogenous contrast mechanism. The method quantifies deoxygenated blood volume (DBV) and hemoglobin oxygen saturation level of venous blood (Yv), yielding oxygen extraction fraction (OEF), and along with a separate measurement of cerebral blood flow, cerebral metabolic rate of oxygen (CMRO2) maps. Here, we evaluated our recently reported 3D qBOLD method that rectifies a number of deficiencies in prior qBOLD approaches in terms of repeat reproducibility and sensitivity to hypercapnia on the metabolic parameters, and in comparison to dual-gas calibrated BOLD (cBOLD) MRI for determining resting-state oxygen metabolism. Results suggested no significant difference between test-retest qBOLD scans in either DBV and OEF. Exposure to hypercapnia yielded group averages of 38 and 28% for OEF and 151 and 146 µmol/min/100 g for CMRO2 in gray matter at baseline and hypercapnia, respectively. The decrease of OEF during hypercapnia was significant (p ≪ 0.01), whereas CMRO2 did not change significantly (p = 0.25). Finally, baseline OEF (37 vs. 39%) and CMRO2 (153 vs. 145 µmol/min/100 g) in gray matter using qBOLD and dual-gas cBOLD were found to be in good agreement with literature values, and were not significantly different from each other (p > 0.1).


Asunto(s)
Circulación Cerebrovascular , Hipercapnia , Imagen por Resonancia Magnética , Oxígeno , Humanos , Imagen por Resonancia Magnética/métodos , Circulación Cerebrovascular/fisiología , Masculino , Oxígeno/metabolismo , Oxígeno/sangre , Adulto , Femenino , Hipercapnia/metabolismo , Consumo de Oxígeno/fisiología , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Mapeo Encefálico/métodos , Reproducibilidad de los Resultados , Adulto Joven , Imagenología Tridimensional/métodos , Sustancia Gris/metabolismo , Sustancia Gris/diagnóstico por imagen
14.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38185996

RESUMEN

In addition to amyloid beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been associated with elevated iron in deep gray matter nuclei using quantitative susceptibility mapping (QSM). However, only a few studies have examined cortical iron, using more macroscopic approaches that cannot assess layer-specific differences. Here, we conducted column-based QSM analyses to assess whether AD-related increases in cortical iron vary in relation to layer-specific differences in the type and density of neurons. We obtained global and regional measures of positive (iron) and negative (myelin, protein aggregation) susceptibility from 22 adults with AD and 22 demographically matched healthy controls. Depth-wise analyses indicated that global susceptibility increased from the pial surface to the gray/white matter boundary, with a larger slope for positive susceptibility in the left hemisphere for adults with AD than controls. Curvature-based analyses indicated larger global susceptibility for adults with AD versus controls; the right hemisphere versus left; and gyri versus sulci. Region-of-interest analyses identified similar depth- and curvature-specific group differences, especially for temporo-parietal regions. Finding that iron accumulates in a topographically heterogenous manner across the cortical mantle may help explain the profound cognitive deterioration that differentiates AD from the slowing of general motor processes in healthy aging.


Asunto(s)
Enfermedad de Alzheimer , Adulto , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Mapeo Encefálico , Hierro/metabolismo , Imagen por Resonancia Magnética , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Placa Amiloide/metabolismo , Encéfalo/metabolismo
15.
Eur J Nucl Med Mol Imaging ; 51(4): 1012-1022, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37955791

RESUMEN

PURPOSE: Aging is a major societal concern due to age-related functional losses. Synapses are crucial components of neural circuits, and synaptic density could be a sensitive biomarker to evaluate brain function. [11C]UCB-J is a positron emission tomography (PET) ligand targeting synaptic vesicle glycoprotein 2A (SV2A), which can be used to evaluate brain synaptic density in vivo. METHODS: We evaluated age-related changes in gray matter synaptic density, volume, and blood flow using [11C]UCB-J PET and magnetic resonance imaging (MRI) in a wide age range of 80 cognitive normal subjects (21-83 years old). Partial volume correction was applied to the PET data. RESULTS: Significant age-related decreases were found in 13, two, and nine brain regions for volume, synaptic density, and blood flow, respectively. The prefrontal cortex showed the largest volume decline (4.9% reduction per decade: RPD), while the synaptic density loss was largest in the caudate (3.6% RPD) and medial occipital cortex (3.4% RPD). The reductions in caudate are consistent with previous SV2A PET studies and likely reflect that caudate is the site of nerve terminals for multiple major tracts that undergo substantial age-related neurodegeneration. There was a non-significant negative relationship between volume and synaptic density reductions in 16 gray matter regions. CONCLUSION: MRI and [11]C-UCB-J PET showed age-related decreases of gray matter volume, synaptic density, and blood flow; however, the regional patterns of the reductions in volume and SV2A binding were different. Those patterns suggest that MR-based measures of GM volume may not be directly representative of synaptic density.


Asunto(s)
Sustancia Gris , Glicoproteínas de Membrana , Humanos , Anciano de 80 o más Años , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Glicoproteínas de Membrana/metabolismo , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Sinapsis/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-37827426

RESUMEN

The heterogeneity of Alzheimer's disease (AD) poses a challenge to precision medicine. We aimed to identify distinct subtypes of AD based on the individualized structural covariance network (IDSCN) analysis and to research the underlying neurobiology mechanisms. In this study, 187 patients with AD (age = 73.57 ± 6.00, 50% female) and 143 matched normal controls (age = 74.30 ± 7.80, 44% female) were recruited from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project database, and T1 images were acquired. We utilized the IDSCN analysis to generate individual-level altered structural covariance network and performed k-means clustering to subtype AD based on structural covariance network. Cognition, disease progression, morphological features, and gene expression profiles were further compared between subtypes, to characterize the heterogeneity in AD. Two distinct AD subtypes were identified in a reproducible manner, and we named the two subtypes as slow progression type (subtype 1, n = 104, age = 76.15 ± 6.44, 42% female) and rapid progression type (subtype 2, n = 83, age = 71.98 ± 8.72, 47% female), separately. Subtype 1 had better baseline visuospatial function than subtype 2 (p < 0.05), whereas subtype 2 had better baseline memory function than subtype 1 (p < 0.05). Subtype 2 showed worse progression in memory (p = 0.003), language (p = 0.003), visuospatial function (p = 0.020), and mental state (p = 0.038) than subtype 1. Subtype 1 often shared increased structural covariance network, mainly in the frontal lobe and temporal lobe regions, whereas subtype 2 often shared increased structural covariance network, mainly in occipital lobe regions and temporal lobe regions. Functional annotation further revealed that all differential structural covariance network between the two AD subtypes were mainly implicated in memory, learning, emotion, and cognition. Additionally, differences in gray matter volume (GMV) between AD subtypes were identified, and genes associated with GMV differences were found to be enriched in the terms potassium ion transport, synapse organization, and histone modification and the pathways viral infection, neurodegeneration-multiple diseases, and long-term depression. The two distinct AD subtypes were identified and characterized with neuroanatomy, cognitive trajectories, and gene expression profiles. These comprehensive results have implications for neurobiology mechanisms and precision medicine.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Femenino , Anciano , Anciano de 80 o más Años , Persona de Mediana Edad , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Imagen por Resonancia Magnética/métodos , Sustancia Gris/metabolismo , Cognición
17.
Brain ; 147(3): 936-948, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37787146

RESUMEN

Blood-based biomarkers have been extensively evaluated for their diagnostic potential in Alzheimer's disease. However, their relative prognostic and monitoring capabilities for cognitive decline, amyloid-ß (Aß) accumulation and grey matter loss in cognitively unimpaired elderly require further investigation over extended time periods. This prospective cohort study in cognitively unimpaired elderly [n = 185, mean age (range) = 69 (53-84) years, 48% female] examined the prognostic and monitoring capabilities of glial fibrillary acidic protein (GFAP), neurofilament light (NfL), Aß1-42/Aß1-40 and phosphorylated tau (pTau)181 through their quantification in serum. All participants underwent baseline Aß-PET, MRI and blood sampling as well as 2-yearly cognitive testing. A subset additionally underwent Aß-PET (n = 109), MRI (n = 106) and blood sampling (n = 110) during follow-up [median time interval (range) = 6.1 (1.3-11.0) years]. Matching plasma measurements were available for Aß1-42/Aß1-40 and pTau181 (both n = 140). Linear mixed-effects models showed that high serum GFAP and NfL predicted future cognitive decline in memory (ßGFAP×Time = -0.021, PFDR = 0.007 and ßNfL×Time = -0.031, PFDR = 0.002) and language (ßGFAP×Time = -0.021, PFDR = 0.002 and ßNfL×Time = -0.018, PFDR = 0.03) domains. Low serum Aß1-42/Aß1-40 equally but independently predicted memory decline (ßAß1-42/Aß1-40×Time = -0.024, PFDR = 0.02). Whole-brain voxelwise analyses revealed that low Aß1-42/Aß1-40 predicted Aß accumulation within the precuneus and frontal regions, high GFAP and NfL predicted grey matter loss within hippocampal regions and low Aß1-42/Aß1-40 predicted grey matter loss in lateral temporal regions. Serum GFAP, NfL and pTau181 increased over time, while Aß1-42/Aß1-40 decreased only in Aß-PET-negative elderly. NfL increases associated with declining memory (ßNfLchange×Time = -0.030, PFDR = 0.006) and language (ßNfLchange×Time = -0.021, PFDR = 0.02) function and serum Aß1-42/Aß1-40 decreases associated with declining language function (ßAß1-42/Aß1-40×Time = -0.020, PFDR = 0.04). GFAP increases associated with Aß accumulation within the precuneus and NfL increases associated with grey matter loss. Baseline and longitudinal serum pTau181 only associated with Aß accumulation in restricted occipital regions. In head-to-head comparisons, serum outperformed plasma Aß1-42/Aß1-40 (ΔAUC = 0.10, PDeLong, FDR = 0.04), while both plasma and serum pTau181 demonstrated poor performance to detect asymptomatic Aß-PET positivity (AUC = 0.55 and 0.63, respectively). However, when measured with a more phospho-specific assay, plasma pTau181 detected Aß-positivity with high performance (AUC = 0.82, PDeLong, FDR < 0.007). In conclusion, serum GFAP, NfL and Aß1-42/Aß1-40 are valuable prognostic and/or monitoring tools in asymptomatic stages providing complementary information in a time- and pathology-dependent manner.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Femenino , Anciano , Masculino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Estudios Prospectivos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Amiloide/metabolismo , Disfunción Cognitiva/metabolismo , Biomarcadores , Cognición , Tomografía de Emisión de Positrones
18.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139097

RESUMEN

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder that affects older premutation carriers (55-200 CGG repeats) of the fragile X gene. Despite the high prevalence of the FXTAS disorder, neuropathology studies of individuals affected by FXTAS are limited. We performed hematoxylin and eosin (H&E) staining in the hippocampus of 26 FXTAS cases and analyzed the tissue microscopically. The major neuropathological characteristics were white matter disease, intranuclear inclusions in neurons and astrocytes, and neuron loss. Astrocytes contained more and larger inclusions than neurons. There was a negative correlation between age of death and CGG repeat length in cases over the age of 60. The number of astroglial inclusions (CA3 and dentate gyrus) and the number of CA3 neuronal inclusions increased with elevated CGG repeat length. In the two cases with a CGG repeat size less than 65, FXTAS intranuclear inclusions were not present in the hippocampus, while in the two cases with less than 70 (65-70) CGG repeat expansion, neurons and astrocytes with inclusions were occasionally identified in the CA1 sub-region. These findings add hippocampus neuropathology to the previously reported changes in other areas of the brain in FXTAS patients, with implications for understanding FXTAS pathogenesis.


Asunto(s)
Síndrome del Cromosoma X Frágil , Temblor , Humanos , Temblor/genética , Sustancia Gris/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Ataxia/genética , Hipocampo/metabolismo , Expansión de Repetición de Trinucleótido
19.
Neuroimage ; 282: 120401, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37802405

RESUMEN

Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging (MRI) technique that can assess the magnetic properties of cerebral iron in vivo. Although brain iron is necessary for basic neurobiological functions, excess iron content disrupts homeostasis, leads to oxidative stress, and ultimately contributes to neurodegenerative disease. However, some degree of elevated brain iron is present even among healthy older adults. To better understand the topographical pattern of iron accumulation and its relation to cognitive aging, we conducted an integrative review of 47 QSM studies of healthy aging, with a focus on five distinct themes. The first two themes focused on age-related increases in iron accumulation in deep gray matter nuclei versus the cortex. The overall level of iron is higher in deep gray matter nuclei than in cortical regions. Deep gray matter nuclei vary with regard to age-related effects, which are most prominent in the putamen, and age-related deposition of iron is also observed in frontal, temporal, and parietal cortical regions during healthy aging. The third theme focused on the behavioral relevance of iron content and indicated that higher iron in both deep gray matter and cortical regions was related to decline in fluid (speed-dependent) cognition. A handful of multimodal studies, reviewed in the fourth theme, suggest that iron interacts with imaging measures of brain function, white matter degradation, and the accumulation of neuropathologies. The final theme concerning modifiers of brain iron pointed to potential roles of cardiovascular, dietary, and genetic factors. Although QSM is a relatively recent tool for assessing cerebral iron accumulation, it has significant promise for contributing new insights into healthy neurocognitive aging.


Asunto(s)
Envejecimiento Saludable , Enfermedades Neurodegenerativas , Humanos , Anciano , Hierro/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Cognición , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo
20.
Neuroimage ; 282: 120381, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37734476

RESUMEN

OBJECTIVE: The objective of this study was to evaluate the whole-brain pattern of oxygen extraction fraction (OEF), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen consumption (CMRO2) perturbation in Alzheimer's disease (AD) and investigate the relationship between regional cerebral oxygen metabolism and global cognition. METHODS: Twenty-six AD patients and 25 age-matched healthy controls (HC) were prospectively recruited in this study. Mini-Mental State Examination (MMSE) was used to evaluate cognitive status. We applied the QQ-CCTV algorithm which combines quantitative susceptibility mapping and quantitative blood oxygen level-dependent models (QQ) for OEF calculation. CBF map was computed from arterial spin labeling and CMRO2 was generated based on Fick's principle. Whole-brain and regional OEF, CBF, and CMRO2 analyses were performed. The associations between these measures in substructures of deep brain gray matter and MMSE scores were assessed. RESULTS: Whole brain voxel-wise analysis showed that CBF and CMRO2 values significantly decreased in AD predominantly in the bilateral angular gyrus, precuneus gyrus and parieto-temporal regions. Regional analysis showed that CBF value decreased in the bilateral caudal hippocampus and left rostral hippocampus and CMRO2 value decreased in left caudal and rostral hippocampus in AD patients. Considering all subjects in the AD and HC groups combined, the mean CBF and CMRO2 values in the bilateral hippocampus positively correlated with the MMSE score. CONCLUSION: CMRO2 mapping with the QQ-CCTV method - which is readily available in MR systems for clinical practice - can be a potential biomarker for AD. In addition, CMRO2 in the hippocampus may be a useful tool for monitoring cognitive impairment.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Oxígeno , Pruebas de Función Respiratoria , Consumo de Oxígeno/fisiología , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...