Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44.169
Filtrar
2.
Vopr Virusol ; 69(3): 231-240, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38996372

RESUMEN

INTRODUCTION: The amino acid substitution A62V in reverse transcriptase was identified as a mutation correlated with virologic failure in patients on first-line therapy including tenofovir (TDF) and tenofovir alafenamide (TAF). A62V is a typically polymorphic mutation in HIV-1 sub-subtype A6, which is the most widespread virus variant in Russia. MATERIALS AND METHODS: The European EuResist (EIDB) database was queried to form two equivalent groups of patients: group 1 ‒ patients with A62V at baseline treated with TDF or TAF on the first-line therapy, group 2 ‒ patients without A62V at baseline treated with TDF or TAF on the first-line therapy. Each group included 23 patients. RESULTS: There was no statistical difference between the two groups in virologic efficacy in 4, 12, and 24 weeks after the start of antiretroviral therapy (ART) and in the frequency of virologic failures. CONCLUSION: This study has some limitations, and the exact role of A62V in the efficacy of the first-line ART based on tenofovir deserves further investigation.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Transcriptasa Inversa del VIH , VIH-1 , Mutación , Tenofovir , Humanos , Tenofovir/uso terapéutico , Tenofovir/análogos & derivados , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Infecciones por VIH/genética , Transcriptasa Inversa del VIH/genética , VIH-1/genética , VIH-1/efectos de los fármacos , Masculino , Femenino , Adulto , Fármacos Anti-VIH/uso terapéutico , Persona de Mediana Edad , Farmacorresistencia Viral/genética , Sustitución de Aminoácidos , Alanina/uso terapéutico , Federación de Rusia/epidemiología , Adenina/análogos & derivados , Adenina/uso terapéutico , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Carga Viral/efectos de los fármacos
3.
Bull Exp Biol Med ; 177(1): 79-83, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38960955

RESUMEN

A new Mycoplasma hominis phenotype forming mini-colonies (MC) on agar and distinct from the phenotype forming typical colonies (TC) not only in size, but also in morphology, growth rate, and resistance to adverse factors, has been previously identified. In this study, the phenotype of colonies was determined and a comparative analysis of the amino acid sequence of the main variable antigen Vaa of the laboratory strain N-34 and seven clinical isolates of M. hominis was performed. It is demonstrated that the amino acid sequence of Vaa in clinical isolates forming TC (similar to the laboratory strain N-34) is entirely analogous to that of laboratory strain. Clinical isolates forming MC carry amino acid substitutions in the variable C-terminal region of Vaa, which can contribute to adhesion to eukaryotic cells and immune evasion. The connection between colony phenotype and amino acid sequence of Vaa is established.


Asunto(s)
Secuencia de Aminoácidos , Infecciones por Mycoplasma , Mycoplasma hominis , Fenotipo , Mycoplasma hominis/genética , Mycoplasma hominis/inmunología , Humanos , Infecciones por Mycoplasma/microbiología , Infecciones por Mycoplasma/inmunología , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/química , Sustitución de Aminoácidos
4.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000061

RESUMEN

The study of rare diseases is important not only for the individuals affected but also for the advancement of medical knowledge and a deeper understanding of human biology and genetics. The wide repertoire of structural information now available from reliable and accurate prediction methods provides the opportunity to investigate the molecular origins of most of the rare diseases reviewed in the Orpha.net database. Thus, it has been possible to analyze the topology of the pathogenic missense variants found in the 2515 proteins involved in Mendelian rare diseases (MRDs), which form the database for our structural bioinformatics study. The amino acid substitutions responsible for MRDs showed different mutation site distributions at different three-dimensional protein depths. We then highlighted the depth-dependent effects of pathogenic variants for the 20,061 pathogenic variants that are present in our database. The results of this structural bioinformatics investigation are relevant, as they provide additional clues to mitigate the damage caused by MRD.


Asunto(s)
Biología Computacional , Enfermedades Raras , Humanos , Biología Computacional/métodos , Enfermedades Raras/genética , Mutación Missense , Bases de Datos Genéticas , Proteínas/química , Proteínas/genética , Modelos Moleculares , Sustitución de Aminoácidos , Conformación Proteica
5.
ACS Nano ; 18(29): 19200-19207, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38996344

RESUMEN

Simultaneous detection and structural characterization of protein variants on a single platform are highly desirable but technically challenging. Herein, we present a single-molecule spectral system based on a gold plasmonic nanopore for analyzing two peptides and their single-point mutated variants. The gold plasmonic nanopore enabled the high-throughput acquisition of surface-enhanced Raman scattering (SERS) spectra at the single-molecule level by electrically driving analytes into hot spots. Furthermore, a statistical method based on Boolean operations was developed to extract prominent features from fluctuated single-molecule SERS spectra. The effects of the single-amino acid substitutions on both the intramolecular interactions and the peptide conformations were directly characterized by the nanopore system, and the results agreed with the predictions by AlphaFold2. This study highlights the mutual benefits of spectroscopy and nanopore technology, whereby the gold plasmonic nanopore offers a powerful tool for the structural analysis of single-molecule proteins.


Asunto(s)
Sustitución de Aminoácidos , Oro , Nanoporos , Péptidos , Espectrometría Raman , Oro/química , Espectrometría Raman/métodos , Péptidos/química , Propiedades de Superficie
6.
Proc Natl Acad Sci U S A ; 121(29): e2317977121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38990941

RESUMEN

In a recent characterization of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variability present in 30 diagnostic samples from patients of the first COVID-19 pandemic wave, 41 amino acid substitutions were documented in the RNA-dependent RNA polymerase (RdRp) nsp12. Eight substitutions were selected in this work to determine whether they had an impact on the RdRp activity of the SARS-CoV-2 nsp12-nsp8-nsp7 replication complex. Three of these substitutions were found around the polymerase central cavity, in the template entry channel (D499G and M668V), and within the motif B (V560A), and they showed polymerization rates similar to the wild type RdRp. The remaining five mutations (P323L, L372F, L372P, V373A, and L527H) were placed near the nsp12-nsp8F contact surface; residues L372, V373, and L527 participated in a large hydrophobic cluster involving contacts between two helices in the nsp12 fingers and the long α-helix of nsp8F. The presence of any of these five amino acid substitutions resulted in important alterations in the RNA polymerization activity. Comparative primer elongation assays showed different behavior depending on the hydrophobicity of their side chains. The substitution of L by the bulkier F side chain at position 372 slightly promoted RdRp activity. However, this activity was dramatically reduced with the L372P, and L527H mutations, and to a lesser extent with V373A, all of which weaken the hydrophobic interactions within the cluster. Additional mutations, specifically designed to disrupt the nsp12-nsp8F interactions (nsp12-V330S, nsp12-V341S, and nsp8-R111A/D112A), also resulted in an impaired RdRp activity, further illustrating the importance of this contact interface in the regulation of RNA synthesis.


Asunto(s)
Mutación Puntual , ARN Viral , SARS-CoV-2 , Proteínas no Estructurales Virales , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/química , ARN Viral/genética , ARN Viral/metabolismo , Humanos , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Polimerizacion , COVID-19/virología , Sustitución de Aminoácidos , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Modelos Moleculares
7.
Protein Sci ; 33(8): e5120, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39022918

RESUMEN

Deamidation frequently is invoked as an important driver of crystallin aggregation and cataract formation. Here, we characterized the structural and biophysical consequences of cumulative Asn to Asp changes in γD-crystallin. Using NMR spectroscopy, we demonstrate that N- or C-terminal domain-confined or fully Asn to Asp changed γD-crystallin exhibits essentially the same 1H-15N HSQC spectrum as the wild-type protein, implying that the overall structure is retained. Only a very small thermodynamic destabilization for the overall Asn to Asp γD-crystallin variants was noted by chaotropic unfolding, and assessment of the colloidal stability, by measuring diffusion interaction parameters, yielded no substantive differences in association propensities. Furthermore, using molecular dynamics simulations, no significant changes in dynamics for proteins with Asn to Asp or iso-Asp changes were detected. Our combined results demonstrate that substitution of all Asn by Asp residues, reflecting an extreme case of deamidation, did not affect the structure and biophysical properties of γD-crystallin. This suggests that these changes alone cannot be the major determinant in driving cataract formation.


Asunto(s)
Asparagina , Ácido Aspártico , Simulación de Dinámica Molecular , Estabilidad Proteica , gamma-Cristalinas , gamma-Cristalinas/química , gamma-Cristalinas/metabolismo , gamma-Cristalinas/genética , Asparagina/química , Asparagina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Humanos , Resonancia Magnética Nuclear Biomolecular , Termodinámica , Catarata/metabolismo , Catarata/genética , Sustitución de Aminoácidos
8.
Sci Rep ; 14(1): 13981, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886481

RESUMEN

Occult hepatitis B virus infection (OBI) is characterized by the presence of HBV DNA in the absence of detectable HBsAg. OBI is an important risk factor for cirrhosis and hepatocellular carcinoma, but its pathogenesis has not been fully elucidated. Mutations in the HBV preS/S genes can lead to impaired secretion of either HBsAg or S-protein resulting in the accumulation of defective viruses or S protein in cells. In our previous work, the M133S mutation was present in the HBV S gene of maintenance hemodialysis (MHD) patients with OBI. In this study, we investigated the potential role of amino acid substitutions in S proteins in S protein production and secretion through the construction of mutant S gene plasmids, structural prediction, transcriptome sequencing analysis, and in vitro functional studies. Protein structure prediction showed that the S protein M133S mutant exhibited hydrophilic modifications, with greater aggregation and accumulation of the entire structure within the membrane phospholipid bilayer. Differential gene enrichment analysis of transcriptome sequencing data showed that differentially expressed genes were mainly concentrated in protein processing in the endoplasmic reticulum (ER). The expression of heat shock family proteins and ER chaperone molecules was significantly increased in the wild-type and mutant groups, whereas the expression of mitochondria-associated proteins was decreased. Immunofluorescence staining and protein blotting showed that the endoplasmic reticulum-associated protein PDI, the autophagy marker LC3, and the lysosome-associated protein LAMP2 co-localized with the S proteins in the wild-type and mutant strains, and their expression was increased. The mitochondria-associated TOMM20 protein was also co-expressed with the S protein, but expression was significantly reduced in the mutant. The M133S mutation in the S gene is expressed as a defective and misfolded protein that accumulates in the endoplasmic reticulum causing secretion-impaired endoplasmic reticulum stress, which in turn triggers mitochondrial autophagy and recruits lysosomes to fuse with the autophagosome, leading to mitochondrial clearance. This study preliminarily demonstrated that the mutation of M133S in the S gene can cause OBI and is associated with disease progression, providing a theoretical basis for the diagnosis and treatment of OBI.


Asunto(s)
Estrés del Retículo Endoplásmico , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B , Hepatitis B , Mitofagia , Diálisis Renal , Humanos , Mitofagia/genética , Hepatitis B/virología , Hepatitis B/genética , Hepatitis B/metabolismo , Hepatitis B/complicaciones , Virus de la Hepatitis B/genética , Estrés del Retículo Endoplásmico/genética , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/metabolismo , Masculino , Mutación , Femenino , Persona de Mediana Edad , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Sustitución de Aminoácidos , Adulto
9.
Biochemistry ; 63(13): 1684-1696, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38885352

RESUMEN

In mammals, l-cysteine (Cys) homeostasis is maintained by the mononuclear nonheme iron enzyme cysteine dioxygenase (CDO), which oxidizes Cys to cysteine sulfinic acid. CDO contains a rare post-translational modification, involving the formation of a thioether cross-link between a Cys residue at position 93 (Mus musculus CDO numbering) and a nearby tyrosine at position 157 (Cys-Tyr cross-link). As-isolated CDO contains both the cross-linked and non-cross-linked isoforms, and formation of the Cys-Tyr cross-link during repeated enzyme turnover increases CDO's catalytic efficiency by ∼10-fold. Interestingly, while the C93G CDO variant lacks the Cys-Tyr cross-link, it is similarly active as cross-linked wild-type (WT) CDO. Alternatively, the Y157F CDO variant, which also lacks the cross-link but maintains the free thiolate at position 93, exhibits a drastically reduced catalytic efficiency. These observations suggest that the untethered thiolate moiety of C93 is detrimental to CDO activity and/or that Y157 is essential for catalysis. To further assess the roles of residues C93 and Y157, we performed a spectroscopic and kinetic characterization of Y157F CDO and the newly designed C93G/Y157F CDO variant. Our results provide evidence that the non-cross-linked C93 thiolate stabilizes a water at the sixth coordination site of Cys-bound Y157F Fe(II)CDO. A water is also present, though more weakly coordinated, in Cys-bound C93G/Y157F Fe(II)CDO. The presence of a water molecule, which must be displaced by cosubstrate O2, likely makes a significant contribution to the ∼15-fold and ∼7-fold reduced catalytic efficiencies of the Y157F and C93G/Y157F CDO variants, respectively, relative to cross-linked WT CDO.


Asunto(s)
Cisteína-Dioxigenasa , Cisteína , Cisteína-Dioxigenasa/metabolismo , Cisteína-Dioxigenasa/química , Cisteína-Dioxigenasa/genética , Cinética , Animales , Cisteína/metabolismo , Cisteína/química , Cisteína/genética , Ratones , Tirosina/metabolismo , Tirosina/genética , Tirosina/química , Sustitución de Aminoácidos , Modelos Moleculares
10.
Protein Sci ; 33(7): e5092, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38924206

RESUMEN

Conserved tryptophan residues are critical for the structure and the stability of ß/γ-crystallin in the lenses of vertebrates. During aging, in which the lenses are continuously exposed to ultraviolet irradiation and other environmental stresses, oxidation of tryptophan residues in ß/γ-crystallin is triggered and impacts the lens proteins to varying degrees. Kynurenine derivatives, formed by oxidation of tryptophan, accumulate, resulting in destabilization and insolubilization of ß/γ-crystallin, which correlates with age-related cataract formation. To understand the contribution of tryptophan modification on the structure and stability of human ßB2-crystallin, five tryptophan residues were mutated to phenylalanine considering its similarity in structure and hydrophilicity to kynurenine. Among all mutants, W59F and W151F altered the stability and homo-oligomerization of ßB2-crystallin-W59F promoted tetramerization whereas W151F blocked oligomerization. Most W59F dimers transformed into tetramer in a month, and the separated dimer and tetramer of W59F demonstrated different structures and hydrophobicity, implying that the biochemical properties of ßB2-crystallin vary over time. By using SAXS, we found that the dimer of ßB2-crystallin in solution resembled the lattice ßB1-crystallin dimer (face-en-face), whereas the tetramer of ßB2-crystallin in solution resembled its lattice tetramer (domain-swapped). Our results suggest that homo-oligomerization of ßB2-crystallin includes potential inter-subunit reactions, such as dissociation, unfolding, and re-formation of the dimers into a tetramer in solution. The W>F mutants are useful in studying different folding states of ßB2-crystallin in lens.


Asunto(s)
Pliegue de Proteína , Triptófano , Cadena B de beta-Cristalina , Humanos , Triptófano/química , Triptófano/genética , Cadena B de beta-Cristalina/química , Cadena B de beta-Cristalina/genética , Cadena B de beta-Cristalina/metabolismo , Mutación , Multimerización de Proteína , Estabilidad Proteica , Interacciones Hidrofóbicas e Hidrofílicas , Sustitución de Aminoácidos
11.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38928101

RESUMEN

In our prior investigations, we elucidated the role of the tryptophan-to-tyrosine substitution at the 61st position in the nonstructural protein NSsW61Y in diminishing the interaction between nonstructural proteins (NSs) and nucleoprotein (NP), impeding viral replication. In this study, we focused on the involvement of NSs in replication via the modulation of autophagosomes. Initially, we examined the impact of NP expression levels, a marker for replication, upon the infection of HeLa cells with severe fever thrombocytopenia syndrome virus (SFTSV), with or without the inhibition of NP binding. Western blot analysis revealed a reduction in NP levels in NSsW61Y-expressing conditions. Furthermore, the expression levels of the canonical autophagosome markers p62 and LC3 decreased in HeLa cells expressing NSsW61Y, revealing the involvement of individual viral proteins on autophagy. Subsequent experiments confirmed that NSsW61Y perturbs autophagy flux, as evidenced by reduced levels of LC3B and p62 upon treatment with chloroquine, an inhibitor of autophagosome-lysosome fusion. LysoTracker staining demonstrated a decrease in lysosomes in cells expressing the NS mutant compared to those expressing wild-type NS. We further explored the mTOR-associated regulatory pathway, a key regulator affected by NS mutant expression. The observed inhibition of replication could be linked to conformational changes in the NSs, impairing their binding to NP and altering mTOR regulation, a crucial upstream signaling component in autophagy. These findings illuminate the intricate interplay between NSsW61Y and the suppression of host autophagy machinery, which is crucial for the generation of autophagosomes to facilitate viral replication.


Asunto(s)
Autofagosomas , Autofagia , Phlebovirus , Triptófano , Tirosina , Proteínas no Estructurales Virales , Replicación Viral , Humanos , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Replicación Viral/genética , Autofagosomas/metabolismo , Células HeLa , Phlebovirus/genética , Phlebovirus/fisiología , Phlebovirus/metabolismo , Autofagia/genética , Tirosina/metabolismo , Triptófano/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Mutación , Sustitución de Aminoácidos , Síndrome de Trombocitopenia Febril Grave/metabolismo , Síndrome de Trombocitopenia Febril Grave/virología , Síndrome de Trombocitopenia Febril Grave/genética , Lisosomas/metabolismo , Nucleoproteínas/metabolismo , Nucleoproteínas/genética
12.
Int J Biol Macromol ; 273(Pt 2): 132685, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823749

RESUMEN

To overcome the trade-off challenge encountered in the engineering of alginate lyase AlyG2 from Seonamhaeicola algicola Gy8T and to expand its potential industrial applications, we devised a two-step strategy encompassing activity enhancement followed by thermal stability engineering. To enhance the specific activity of efficient AlyG2, we strategically substituted residues with bulky steric hindrance proximal to the active pocket with glycine or alanine. This led to the generation of three promising positive mutants, with particular emphasis on the T91S mutant, exhibiting a 1.91-fold specific activity compared to the wild type. To mitigate the poor thermal stability of T91S, mutants with negative ΔΔG values in the thermal flexibility region were screened out. Notably, the S72Ya mutant not only displayed 17.96 % further increase in specific activity but also exhibited improved stability compared to T91S, manifesting as a remarkable 30.97 % increase in relative activity following a 1-hour incubation at 42 °C. Furthermore, enhanced kinetic stability was observed. To gain deeper insights into the mechanism underlying the enhanced thermostability of the S72Ya mutant, we conducted molecular dynamics simulations, principal component analysis (PCA), dynamic cross-correlation map (DCCM), and free energy landscape (FEL) analysis. The results unveiled a reduction in the flexibility of the surface loop, a stronger correlation dynamic and a narrower motion subspace in S72Ya system, along with the formation of more stable hydrogen bonds. Collectively, our findings suggest amino acids substitutions resulting in smaller side chains proximate to the active site can positively impact enzyme activity, while reducing the flexibility of surface loops emerges as a pivotal factor in conferring thermal stability. These insights offer valuable guidance and a framework for the engineering of other enzyme types.


Asunto(s)
Estabilidad de Enzimas , Simulación de Dinámica Molecular , Polisacárido Liasas , Polisacárido Liasas/química , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Cinética , Temperatura , Ingeniería de Proteínas/métodos , Mutación , Sustitución de Aminoácidos , Mutagénesis Sitio-Dirigida
13.
Protein Sci ; 33(7): e5081, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38924648

RESUMEN

It has been shown previously that a set of three modifications-termed S1, Crystal Kappa, and elbow-act synergistically to improve the crystallizability of an antigen-binding fragment (Fab) framework. Here, we prepared a phage-displayed library and performed crystallization screenings to identify additional substitutions-located near the heavy-chain elbow region-which cooperate with the S1, Crystal Kappa, and elbow modifications to increase expression and improve crystallizability of the Fab framework even further. One substitution (K141Q) supports the signature Crystal Kappa-mediated Fab:Fab crystal lattice packing interaction. Another substitution (E172G) improves the compatibility of the elbow modification with the Fab framework by alleviating some of the strain incurred by the shortened and bulkier elbow linker region. A third substitution (F170W) generates a split-Fab conformation, resulting in a powerful crystal lattice packing interaction comprising the biological interaction interface between the variable heavy and light chain domains. In sum, we have used K141Q, E172G, and F170W substitutions-which complement the S1, Crystal Kappa, and elbow modifications-to generate a set of highly crystallizable Fab frameworks that can be used as chaperones to enable facile elucidation of Fab:antigen complex structures by x-ray crystallography.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/metabolismo , Cristalografía por Rayos X , Cristalización , Modelos Moleculares , Conformación Proteica , Humanos , Sustitución de Aminoácidos
14.
Protein Sci ; 33(7): e5075, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38895978

RESUMEN

Rheostat positions, which can be substituted with various amino acids to tune protein function across a range of outcomes, are a developing area for advancing personalized medicine and bioengineering. Current methods cannot accurately predict which proteins contain rheostat positions or their substitution outcomes. To compare the prevalence of rheostat positions in homologs, we previously investigated their occurrence in two pyruvate kinase (PYK) isozymes. Human liver PYK contained numerous rheostat positions that tuned the apparent affinity for the substrate phosphoenolpyruvate (Kapp-PEP) across a wide range. In contrast, no functional rheostat positions were identified in Zymomonas mobilis PYK (ZmPYK). Further, the set of ZmPYK substitutions included an unusually large number that lacked measurable activity. We hypothesized that the inactive substitution variants had reduced protein stability, precluding detection of Kapp-PEP tuning. Using modified buffers, robust enzymatic activity was obtained for 19 previously-inactive ZmPYK substitution variants at three positions. Surprisingly, both previously-inactive and previously-active substitution variants all had Kapp-PEP values close to wild-type. Thus, none of the three positions were functional rheostat positions, and, unlike human liver PYK, ZmPYK's Kapp-PEP remained poorly tunable by single substitutions. To directly assess effects on stability, we performed thermal denaturation experiments for all ZmPYK substitution variants. Many diminished stability, two enhanced stability, and the three positions showed different thermal sensitivity to substitution, with one position acting as a "stability rheostat." The differences between the two PYK homologs raises interesting questions about the underlying mechanism(s) that permit functional tuning by single substitutions in some proteins but not in others.


Asunto(s)
Piruvato Quinasa , Zymomonas , Humanos , Zymomonas/enzimología , Zymomonas/genética , Zymomonas/química , Zymomonas/metabolismo , Piruvato Quinasa/química , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Sustitución de Aminoácidos , Estabilidad Proteica , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Estabilidad de Enzimas , Hígado/enzimología , Hígado/metabolismo , Hígado/química , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato/química
15.
Arch Microbiol ; 206(7): 298, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860999

RESUMEN

A decreased chloramphenicol susceptibility in Haemophilus influenzae is commonly caused by the activity of chloramphenicol acetyltransferases (CATs). However, the involvement of membrane proteins in chloramphenicol susceptibility in H. influenzae remains unclear. In this study, chloramphenicol susceptibility testing, whole-genome sequencing, and analyses of membrane-related genes were performed in 51 H. influenzae isolates. Functional complementation assays and structure-based protein analyses were conducted to assess the effect of proteins with sequence substitutions on the minimum inhibitory concentration (MIC) of chloramphenicol in CAT-negative H. influenzae isolates. Six isolates were resistant to chloramphenicol and positive for type A-2 CATs. Of these isolates, A3256 had a similar level of CAT activity but a higher chloramphenicol MIC relative to the other resistant isolates; it also had 163 specific variations in 58 membrane genes. Regarding the CAT-negative isolates, logistic regression and receiver operator characteristic curve analyses revealed that 48T > G (Asn16Lys), 85 C > T (Leu29Phe), and 88 C > A (Leu30Ile) in HI_0898 (emrA), and 86T > G (Phe29Cys) and 141T > A (Ser47Arg) in HI_1177 (artM) were associated with enhanced chloramphenicol susceptibility, whereas 997G > A (Val333Ile) in HI_1612 (hmrM) was associated with reduced chloramphenicol susceptibility. Furthermore, the chloramphenicol MIC was lower in the CAT-negative isolates with EmrA-Leu29Phe/Leu30Ile or ArtM-Ser47Arg substitution and higher in those with HmrM-Val333Ile substitution, relative to their counterparts. The Val333Ile substitution was associated with enhanced HmrM protein stability and flexibility and increased chloramphenicol MICs in CAT-negative H. influenzae isolates. In conclusion, the substitution in H. influenzae multidrug efflux pump HmrM associated with reduced chloramphenicol susceptibility was characterised.


Asunto(s)
Sustitución de Aminoácidos , Antibacterianos , Proteínas Bacterianas , Cloranfenicol O-Acetiltransferasa , Cloranfenicol , Haemophilus influenzae , Pruebas de Sensibilidad Microbiana , Cloranfenicol/farmacología , Haemophilus influenzae/genética , Haemophilus influenzae/efectos de los fármacos , Haemophilus influenzae/metabolismo , Haemophilus influenzae/aislamiento & purificación , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cloranfenicol O-Acetiltransferasa/genética , Cloranfenicol O-Acetiltransferasa/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Resistencia al Cloranfenicol/genética , Humanos , Infecciones por Haemophilus/microbiología , Secuenciación Completa del Genoma
16.
Virol J ; 21(1): 128, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840203

RESUMEN

The envelope (E) protein of the Japanese encephalitis virus (JEV) is a key protein for virus infection and adsorption of host cells, which determines the virulence of the virus and regulates the intensity of inflammatory response. The mutation of multiple aa residues in the E protein plays a critical role in the attenuated strain of JEV. This study demonstrated that the Asp to Gly, Ser, and His mutation of the E389 site, respectively, the replication ability of the viruses in cells was significantly reduced, and the viral neuroinvasiveness was attenuated to different degrees. Among them, the mutation at E389 site enhanced the E protein flexibility contributed to the attenuation of neuroinvasiveness. In contrast, less flexibility of E protein enhanced the neuroinvasiveness of the strain. Our results indicate that the mechanism of attenuation of E389 aa mutation attenuates neuroinvasiveness is related to increased flexibility of the E protein. In addition, the increased flexibility of E protein enhanced the viral sensitivity to heparin inhibition in vitro, which may lead to a decrease in the viral load entering brain. These results suggest that E389 residue is a potential site affecting JEV virulence, and the flexibility of the E protein of aa at this site plays an important role in the determination of neuroinvasiveness.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Proteínas del Envoltorio Viral , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/fisiología , Virus de la Encefalitis Japonesa (Especie)/efectos de los fármacos , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/química , Animales , Línea Celular , Virulencia , Replicación Viral , Encefalitis Japonesa/virología , Humanos , Heparina/farmacología , Sustitución de Aminoácidos , Mutación Missense , Ratones , Mutación , Factores de Virulencia/genética , Glicoproteínas de Membrana
17.
Mol Plant Pathol ; 25(6): e13487, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877765

RESUMEN

We had previously reported that a plum pox virus (PPV)-based chimera that had its P1-HCPro bi-cistron replaced by a modified one from potato virus Y (PVY) increased its virulence in some Nicotiana benthamiana plants, after mechanical passages. This correlated with the natural acquisition of amino acid substitutions in several proteins, including in HCPro at either position 352 (Ile→Thr) or 454 (Leu→Arg), or of mutations in non-coding regions. Thr in position 352 is not found among natural potyviruses, while Arg in 454 is a reversion to the native PVY HCPro amino acid. We show here that both mutations separately contributed to the increased virulence observed in the passaged chimeras that acquired them, and that Thr in position 352 is no intragenic suppressor to a Leu in position 454, because their combined effects were cumulative. We demonstrate that Arg in position 454 improved HCPro autocatalytic cleavage, while Thr in position 352 increased its accumulation and the silencing suppression of a reporter in agropatch assays. We assessed infection by four cloned chimera variants expressing HCPro with none of the two substitutions, one of them or both, in wild-type versus DCL2/4-silenced transgenic plants. We found that during infection, the transgenic context of altered small RNAs affected the accumulation of the four HCPro variants differently and hence, also infection virulence.


Asunto(s)
Sustitución de Aminoácidos , Nicotiana , Potyvirus , Proteínas Virales , Virulencia/genética , Nicotiana/virología , Potyvirus/patogenicidad , Potyvirus/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Enfermedades de las Plantas/virología , Quimera , Virus Eruptivo de la Ciruela/patogenicidad , Virus Eruptivo de la Ciruela/genética , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Mutación/genética
18.
Virol J ; 21(1): 144, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918875

RESUMEN

BACKGROUND: HIV-1 produces Tat, a crucial protein for transcription, viral replication, and CNS neurotoxicity. Tat interacts with TAR, enhancing HIV reverse transcription. Subtype C Tat variants (C31S, R57S, Q63E) are associated with reduced transactivation and neurovirulence compared to subtype B. However, their precise impact on Tat-TAR binding is unclear. This study investigates how these substitutions affect Tat-TAR interaction. METHODS: We utilized molecular modelling techniques, including MODELLER, to produce precise three-dimensional structures of HIV-1 Tat protein variants. We utilized Tat subtype B as the reference or wild type, and generated Tat variants to mirror those amino acid variants found in Tat subtype C. Subtype C-specific amino acid substitutions were selected based on their role in the neuropathogenesis of HIV-1. Subsequently, we conducted molecular docking of each Tat protein variant to TAR using HDOCK, followed by molecular dynamic simulations. RESULTS: Molecular docking results indicated that Tat subtype B (TatWt) showed the highest affinity for the TAR element (-262.07), followed by TatC31S (-261.61), TatQ63E (-256.43), TatC31S/R57S/Q63E (-238.92), and TatR57S (-222.24). However, binding free energy analysis showed higher affinities for single variants TatQ63E (-349.2 ± 10.4 kcal/mol) and TatR57S (-290.0 ± 9.6 kcal/mol) compared to TatWt (-247.9 ± 27.7 kcal/mol), while TatC31S and TatC31S/R57SQ/63E showed lower values. Interactions over the protein trajectory were also higher for TatQ63E and TatR57S compared to TatWt, TatC31S, and TatC31S/R57SQ/63E, suggesting that modifying amino acids within the Arginine/Glutamine-rich region notably affects TAR interaction. Single amino acid mutations TatR57S and TatQ63E had a significant impact, while TatC31S had minimal effect. Introducing single amino acid variants from TatWt to a more representative Tat subtype C (TatC31S/R57SQ/63E) resulted in lower predicted binding affinity, consistent with previous findings. CONCLUSIONS: These identified amino acid positions likely contribute significantly to Tat-TAR interaction and the differential pathogenesis and neuropathogenesis observed between subtype B and subtype C. Additional experimental investigations should prioritize exploring the influence of these amino acid signatures on TAR binding to gain a comprehensive understanding of their impact on viral transactivation, potentially identifying them as therapeutic targets.


Asunto(s)
Sustitución de Aminoácidos , VIH-1 , Simulación de Dinámica Molecular , Unión Proteica , Productos del Gen tat del Virus de la Inmunodeficiencia Humana , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , VIH-1/genética , VIH-1/clasificación , VIH-1/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Duplicado del Terminal Largo de VIH/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Modelos Moleculares
19.
Antiviral Res ; 228: 105935, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880196

RESUMEN

Emergence of drug resistance is rare after use of letermovir (LMV) as prophylaxis for post-transplant cytomegalovirus (CMV) infection. In a recent study involving renal transplant recipients, no known LMV resistance mutations were detected in those receiving LMV prophylaxis. However, uncharacterized viral amino acid substitutions were detected in LMV recipients by deep sequencing in viral subpopulations of 5%-7%, at codons previously associated with drug resistance: UL56 S229Y (n = 1), UL56 M329I (n = 9) and UL89 D344Y (n = 5). Phenotypic analysis of these mutations in a cloned laboratory CMV strain showed that S229Y conferred a 2-fold increase in LMV EC50, M329I conferred no LMV resistance, and D344Y knocked out viral viability that was restored after the nonviable clone was reverted to wild type D344. As in previous CMV antiviral trials, the detection of nonviable mutations, even in multiple study subjects, raises strong suspicion of genotyping artifacts and encourages the use of replicate testing for authentication of atypical mutation readouts. The non-viability of UL89 D344Y also confirms the biologically important locus of the D344E substitution that confers resistance to benzimidazole CMV terminase complex inhibitors, but does not feature prominently in LMV resistance.


Asunto(s)
Acetatos , Antivirales , Infecciones por Citomegalovirus , Citomegalovirus , Farmacorresistencia Viral , Genotipo , Fenotipo , Quinazolinas , Humanos , Citomegalovirus/genética , Citomegalovirus/efectos de los fármacos , Antivirales/farmacología , Antivirales/uso terapéutico , Farmacorresistencia Viral/genética , Infecciones por Citomegalovirus/virología , Infecciones por Citomegalovirus/tratamiento farmacológico , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Acetatos/farmacología , Acetatos/uso terapéutico , Sustitución de Aminoácidos , Trasplante de Riñón , Mutación , Variación Genética , Técnicas de Genotipaje/métodos , Proteínas Virales/genética
20.
Bioinformatics ; 40(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38941503

RESUMEN

MOTIVATION: Errors in the processing of genetic information during protein synthesis can lead to phenotypic mutations, such as amino acid substitutions, e.g. by transcription or translation errors. While genetic mutations can be readily identified using DNA sequencing, and mutations due to transcription errors by RNA sequencing, translation errors can only be identified proteome-wide using mass spectrometry. RESULTS: Here, we provide a Python package implementation of a high-throughput pipeline to detect amino acid substitutions in mass spectrometry datasets. Our tools enable users to process hundreds of mass spectrometry datasets in batch mode to detect amino acid substitutions and calculate codon-specific and site-specific translation error rates. deTELpy will facilitate the systematic understanding of amino acid misincorporation rates (translation error rates), and the inference of error models across organisms and under stress conditions, such as drug treatment or disease conditions. AVAILABILITY AND IMPLEMENTATION: deTELpy is implemented in Python 3 and is freely available with detailed documentation and practical examples at https://git.mpi-cbg.de/tothpetroczylab/detelpy and https://pypi.org/project/deTELpy/ and can be easily installed via pip install deTELpy.


Asunto(s)
Sustitución de Aminoácidos , Espectrometría de Masas , Programas Informáticos , Espectrometría de Masas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...