Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
mSphere ; 9(9): e0025124, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39120135

RESUMEN

Although most cyanobacteria grow in visible light (VL; λ = 400-700 nm), some cyanobacteria can also use far-red light (FRL; λ = 700-800 nm) for oxygenic photosynthesis by performing far-red light photoacclimation. These two types of cyanobacteria can be found in the same environment. However, how they respond to each other remains unknown. Here, we reveal that coculture stresses FRL-using Chlorogloeopsis fritschii PCC 9212 and VL-using Synechocystis sp. PCC 6803. No significant growth difference was found in Synechocystis sp. PCC 6803 between the coculture and the monoculture. Conversely, the growth of Chlorogloeopsis fritschii PCC 9212 was suppressed in VL under coculture. According to transcriptomic analysis, Chlorogloeopsis fritschii PCC 9212 in coculture shows low transcript levels of metabolic activities and high transcript levels of ion transporters, with the differences being more noticeable in VL than in FRL. The transcript levels of stress responses in coculture were likewise higher than in monoculture in Synechocystis sp. PCC 6803 under FRL. The low transcript level of metabolic activities in coculture or the inhibition of cyanobacterial growth indicates a possible negative interaction between these two cyanobacterial strains.IMPORTANCEThe interaction between two cyanobacterial species is the primary focus of this study. One species harvests visible light, while the other can harvest far-red and visible light. Prior research on cyanobacteria interaction concentrated on its interactions with algal, coral, and fungal species. Interactions between cyanobacterial species were, nevertheless, rarely discussed. Thus, we characterized the interaction between two cyanobacterial species, one capable of photosynthesis using far-red light and the other not. Through experimental and bioinformatic approaches, we demonstrate that when one cyanobacterium thrives under optimal light conditions, it stresses the remaining cyanobacterial species. We contribute to an ecological understanding of these two kinds of cyanobacteria distribution patterns. Cyanobacteria that utilize far-red light probably disperse in environments with limited visible light to avoid competition with other cyanobacteria. From a biotechnological standpoint, this study suggests that the simultaneous cultivation of two cyanobacterial species in large-scale cultivation facilities may reduce the overall biomass yield.


Asunto(s)
Luz , Fotosíntesis , Estrés Fisiológico , Synechocystis , Synechocystis/crecimiento & desarrollo , Synechocystis/fisiología , Synechocystis/efectos de la radiación , Synechocystis/genética , Synechocystis/metabolismo , Cianobacterias/efectos de la radiación , Cianobacterias/genética , Cianobacterias/crecimiento & desarrollo , Cianobacterias/fisiología , Cianobacterias/metabolismo , Técnicas de Cocultivo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Interacciones Microbianas , Luz Roja
2.
Plant Physiol ; 196(1): 621-633, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38833609

RESUMEN

Photomixotrophic growth A (PmgA) is a pleiotropic regulator essential for growth under photomixotrophic and prolonged high-light (HL) conditions in the cyanobacterium Synechocystis sp. PCC 6803. The overall similarity with the antisigma factor of the bacterial partner-switching system indicates that PmgA exerts a regulatory function via phosphorylation of its target proteins. In this study, we performed an in vitro phosphorylation assay and protein-protein interaction analysis and found that PmgA interacts with 4 antisigma antagonist homologs, Ssr1600, Slr1856, Slr1859, and Slr1912, but specifically phosphorylates Ssr1600. Phenotypic analyses using the set of gene disruption and overexpression strains of pmgA and ssr1600 revealed that phosphorylation by PmgA is essential for the accumulation of Ssr1600 protein in vivo. The ssr1600-disrupted mutant showed similar phenotypes as those previously reported for the pmgA-disrupted mutant, namely, no obvious phenotype just after the shift to HL, but higher chlorophyll content, 5-aminolevulinic acid synthesis activity, and psaAB transcript levels than those in the wild type after 6 h. These findings indicate that the phosphorylated form of Ssr1600 works as the output of the partner-switching system to coordinately repress chlorophyll biosynthesis and accumulation of photosystem I during HL acclimation.


Asunto(s)
Aclimatación , Proteínas Bacterianas , Luz , Synechocystis , Synechocystis/genética , Synechocystis/metabolismo , Synechocystis/fisiología , Synechocystis/efectos de la radiación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Fosforilación , Aclimatación/genética , Regulación Bacteriana de la Expresión Génica , Clorofila/metabolismo
3.
Plant Cell Physiol ; 65(8): 1285-1297, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38907526

RESUMEN

Cyanobacteria play a key role in primary production in both oceans and fresh waters and hold great potential for sustainable production of a large number of commodities. During their life, cyanobacteria cells need to acclimate to a multitude of challenges, including shifts in intensity and quality of incident light. Despite our increasing understanding of metabolic regulation under various light regimes, detailed insight into fitness advantages and limitations under shifting light quality remains underexplored. Here, we study photo-physiological acclimation in the cyanobacterium Synechocystis sp. PCC 6803 throughout the photosynthetically active radiation (PAR) range. Using light emitting diodes (LEDs) with qualitatively different narrow spectra, we describe wavelength dependence of light capture, electron transport and energy transduction to main cellular pools. In addition, we describe processes that fine-tune light capture, such as state transitions, or the efficiency of energy transfer from phycobilisomes to photosystems (PS). We show that growth was the most limited under blue light due to inefficient light harvesting, and that many cellular processes are tightly linked to the redox state of the plastoquinone (PQ) pool, which was the most reduced under red light. The PSI-to-PSII ratio was low under blue photons, however, it was not the main growth-limiting factor, since it was even more reduced under violet and near far-red lights, where Synechocystis grew faster compared to blue light. Our results provide insight into the spectral dependence of phototrophic growth and can provide the foundation for future studies of molecular mechanisms underlying light acclimation in cyanobacteria, leading to light optimization in controlled cultivations.


Asunto(s)
Aclimatación , Luz , Fotosíntesis , Synechocystis , Synechocystis/fisiología , Synechocystis/efectos de la radiación , Synechocystis/metabolismo , Synechocystis/crecimiento & desarrollo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Transporte de Electrón
4.
Biotechnol Prog ; 39(3): e3326, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36700527

RESUMEN

In nature, photosynthetic organisms are exposed to fluctuating light, and their physiological systems must adapt to this fluctuation. To maintain homeostasis, these organisms have a light fluctuation photoprotective mechanism, which functions in both photosystems and metabolism. Although the photoprotective mechanisms functioning in the photosystem have been studied, it is unclear how metabolism responds to light fluctuations within a few seconds. In the present study, we investigated the metabolic response of Synechocystis sp. PCC 6803 to light fluctuations using 13 C-metabolic flux analysis. The light intensity and duty ratio were adjusted such that the total number of photons or the light intensity during the low-light phase was equal. Light fluctuations affected cell growth and photosynthetic activity under the experimental conditions. However, metabolic flux distributions and cofactor production rates were not affected by the light fluctuations. Furthermore, the estimated ATP and NADPH production rates in the photosystems suggest that NADPH-consuming electron dissipation occurs under fluctuating light conditions. Although we focused on the water-water cycle as the electron dissipation path, no growth effect was observed in an flv3-disrupted strain under fluctuating light, suggesting that another path contributes to electron dissipation under these conditions.


Asunto(s)
Luz , Análisis de Flujos Metabólicos , Fotosíntesis , Synechocystis , Adenosina Trifosfato/metabolismo , Clorofila/metabolismo , Transporte de Electrón , Fluorescencia , NADP/metabolismo , Oxígeno/metabolismo , Fenotipo , Fotosíntesis/efectos de la radiación , Synechocystis/clasificación , Synechocystis/crecimiento & desarrollo , Synechocystis/metabolismo , Synechocystis/efectos de la radiación , Agua/metabolismo
5.
Nature ; 609(7928): 835-845, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045294

RESUMEN

Phycobilisome (PBS) structures are elaborate antennae in cyanobacteria and red algae1,2. These large protein complexes capture incident sunlight and transfer the energy through a network of embedded pigment molecules called bilins to the photosynthetic reaction centres. However, light harvesting must also be balanced against the risks of photodamage. A known mode of photoprotection is mediated by orange carotenoid protein (OCP), which binds to PBS when light intensities are high to mediate photoprotective, non-photochemical quenching3-6. Here we use cryogenic electron microscopy to solve four structures of the 6.2 MDa PBS, with and without OCP bound, from the model cyanobacterium Synechocystis sp. PCC 6803. The structures contain a previously undescribed linker protein that binds to the membrane-facing side of PBS. For the unquenched PBS, the structures also reveal three different conformational states of the antenna, two previously unknown. The conformational states result from positional switching of two of the rods and may constitute a new mode of regulation of light harvesting. Only one of the three PBS conformations can bind to OCP, which suggests that not every PBS is equally susceptible to non-photochemical quenching. In the OCP-PBS complex, quenching is achieved through the binding of four 34 kDa OCPs organized as two dimers. The complex reveals the structure of the active form of OCP, in which an approximately 60 Å displacement of its regulatory carboxy terminal domain occurs. Finally, by combining our structure with spectroscopic properties7, we elucidate energy transfer pathways within PBS in both the quenched and light-harvesting states. Collectively, our results provide detailed insights into the biophysical underpinnings of the control of cyanobacterial light harvesting. The data also have implications for bioengineering PBS regulation in natural and artificial light-harvesting systems.


Asunto(s)
Ficobilisomas , Luz Solar , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transferencia de Energía/efectos de la radiación , Fotosíntesis/efectos de la radiación , Ficobilisomas/química , Ficobilisomas/metabolismo , Ficobilisomas/efectos de la radiación , Synechocystis/metabolismo , Synechocystis/efectos de la radiación
6.
Appl Environ Microbiol ; 88(13): e0056222, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35727027

RESUMEN

Some cyanobacteria can perform far-red light photoacclimation (FaRLiP), which allows them to use far-red light (FRL) for oxygenic photosynthesis. Most of the cyanobacteria able to use FRL were discovered in low visible-light (VL; λ = 400-700 nm) environments that are also enriched in FRL (λ = 700-800 nm). However, these cyanobacteria grow faster in VL than in FRL in laboratory conditions, indicating that FRL is not their preferred light source when VL is available. Therefore, it is interesting to understand why such strains were primarily found in FRL-enriched but not VL-enriched environments. To this aim, we established a terrestrial model system with quartz sand to study the distribution and photoacclimation of cyanobacterial strains. A FaRLiP-performing cyanobacterium, Leptolyngbya sp. JSC-1, and a VL-utilizing model cyanobacterium, Synechocystis sp. PCC 6803, were compared in this study. We found that, although Leptolyngbya sp. JSC-1 can grow well in both VL and FRL, Synechocystis sp. PCC 6803 grows much faster than Leptolyngbya sp. JSC-1 in VL. In addition, the growth was higher in liquid cocultures than in monocultures of Leptolyngbya sp. JSC-1 or Synechocystis sp. PCC 6803. In an artificial terrestrial model system, Leptolyngbya sp. JSC-1 has an advantage when growing in coculture at greater depths by performing FaRLiP. Therefore, strong competition for VL and slower growth rate are possible reasons why FRL-utilizing cyanobacteria are found in environments with low VL intensities. This model system provides a valuable tool for future studies of cyanobacterial ecological niches and interactions in a terrestrial environment. IMPORTANCE This study uses sand columns to establish a terrestrial model system for the investigation of the distribution and acclimation of cyanobacteria to far-red light. Previous studies of this group of cyanobacteria required direct in situ samplings. The variability of conditions and abundances of the cyanobacteria in natural settings impeded detailed analyses and comparisons. Therefore, we established this model system under controlled conditions in the laboratory. In this system, the distribution and acclimation of two cyanobacteria were similar to the situation observed in natural environments, which validates that it can be used to study fundamental questions. Using this approach, we made the unanticipated observation that two cyanobacteria grow faster in coculture than in axenic cultures. This laboratory-based model system can provide a valuable new tool for comparing cyanobacterial strains (e.g., mutants and wild type), exploring interactions between cyanobacterial strains and interactions with other bacteria, and characterizing ecological niches of cyanobacteria.


Asunto(s)
Aclimatación , Cianobacterias , Synechocystis , Cianobacterias/efectos de la radiación , Luz , Fotosíntesis , Cuarzo , Arena , Synechocystis/efectos de la radiación
7.
Plant Cell Physiol ; 63(1): 82-91, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34623441

RESUMEN

Cyanobacterial mutants defective in acyl-acyl carrier protein synthetase (Aas) produce free fatty acids (FFAs) because the FFAs generated by deacylation of membrane lipids cannot be recycled. An engineered Aas-deficient mutant of Synechocystis sp. PCC 6803 grew normally under low-light (LL) conditions (50 µmol photons m-2 s-1) but was unable to sustain growth under high-light (HL) conditions (400 µmol photons m-2 s-1), revealing a crucial role of Aas in survival under the HL conditions. Several-times larger amounts of FFAs were produced by HL-exposed cultures than LL-grown cultures. Palmitic acid accounted for ∼85% of total FFAs in HL-exposed cultures, while C18 fatty acids (FAs) constituted ∼80% of the FFAs in LL-grown cultures. Since C16 FAs are esterified to the sn-2 position of lipids in the Synechocystis species, it was deduced that HL irradiation activated deacylation of lipids at the sn-2 position. Heterologous expression of FarB, the FFA exporter protein of Neisseria lactamica, prevented intracellular FFA accumulation and rescued the growth defect of the mutant under HL, indicating that intracellular FFA was the cause of growth inhibition. FarB expression also decreased the 'per-cell' yield of FFA under HL by 90% and decreased the proportion of palmitic acid to ∼15% of total FFA. These results indicated that the HL-induced lipid deacylation is triggered not by strong light per se but by HL-induced damage to the cells. It was deduced that there is a positive feedback loop between HL-induced damage and lipid deacylation, which is lethal unless FFA accumulation is prevented by Aas.


Asunto(s)
Ácidos Grasos no Esterificados/metabolismo , Luz/efectos adversos , Lípidos de la Membrana/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Synechocystis/efectos de la radiación , Tioléster Hidrolasas/metabolismo , Adaptación Ocular/fisiología , Células Cultivadas/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mutación , Estrés Fisiológico
8.
Plant J ; 109(1): 23-34, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34709696

RESUMEN

In this Perspective article, we describe the visions of the PhotoRedesign consortium funded by the European Research Council of how to enhance photosynthesis. The light reactions of photosynthesis in individual phototrophic species use only a fraction of the solar spectrum, and high light intensities can impair and even damage the process. In consequence, expanding the solar spectrum and enhancing the overall energy capacity of the process, while developing resilience to stresses imposed by high light intensities, could have a strong positive impact on food and energy production. So far, the complexity of the photosynthetic machinery has largely prevented improvements by conventional approaches. Therefore, there is an urgent need to develop concepts to redesign the light-harvesting and photochemical capacity of photosynthesis, as well as to establish new model systems and toolkits for the next generation of photosynthesis researchers. The overall objective of PhotoRedesign is to reconfigure the photosynthetic light reactions so they can harvest and safely convert energy from an expanded solar spectrum. To this end, a variety of synthetic biology approaches, including de novo design, will combine the attributes of photosystems from different photoautotrophic model organisms, namely the purple bacterium Rhodobacter sphaeroides, the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana. In parallel, adaptive laboratory evolution will be applied to improve the capacity of reimagined organisms to cope with enhanced input of solar energy, particularly in high and fluctuating light.


Asunto(s)
Arabidopsis/genética , Evolución Molecular Dirigida , Fotosíntesis/genética , Rhodobacter sphaeroides/genética , Synechocystis/genética , Biología Sintética , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Luz , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema II/genética , Rhodobacter sphaeroides/fisiología , Rhodobacter sphaeroides/efectos de la radiación , Synechocystis/fisiología , Synechocystis/efectos de la radiación
9.
mBio ; 12(6): e0239821, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34809455

RESUMEN

Cyanobacteria rely on photosynthesis, and thus have evolved complex responses to light. These include phototaxis, the ability of cells to sense light direction and move towards or away from it. Analysis of mutants has demonstrated that phototaxis requires the coordination of multiple photoreceptors and signal transduction networks. The output of these networks is relayed to type IV pili (T4P) that attach to and exert forces on surfaces or other neighboring cells to drive "twitching" or "gliding" motility. This, along with the extrusion of polysaccharides or "slime" by cells, facilitates the emergence of group behavior. We evaluate recent models that describe the emergence of collective colony-scale behavior from the responses of individual, interacting cells. We highlight the advantages of "active matter" approaches in the study of bacterial communities, discussing key differences between emergent behavior in cyanobacterial phototaxis and similar behavior in chemotaxis or quorum sensing.


Asunto(s)
Fototaxis , Synechocystis/fisiología , Synechocystis/efectos de la radiación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Quimiotaxis , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/fisiología , Fimbrias Bacterianas/efectos de la radiación , Luz , Mutación , Percepción de Quorum , Synechocystis/genética
10.
Cells ; 10(8)2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34440685

RESUMEN

Light plays an essential role in photosynthesis; however, its excess can cause damage to cellular components. Photosynthetic organisms thus developed a set of photoprotective mechanisms (e.g., non-photochemical quenching, photoinhibition) that can be studied by a classic biochemical and biophysical methods in cell suspension. Here, we combined these bulk methods with single-cell identification of microdomains in thylakoid membrane during high-light (HL) stress. We used Synechocystis sp. PCC 6803 cells with YFP tagged photosystem I. The single-cell data pointed to a three-phase response of cells to acute HL stress. We defined: (1) fast response phase (0-30 min), (2) intermediate phase (30-120 min), and (3) slow acclimation phase (120-360 min). During the first phase, cyanobacterial cells activated photoprotective mechanisms such as photoinhibition and non-photochemical quenching. Later on (during the second phase), we temporarily observed functional decoupling of phycobilisomes and sustained monomerization of photosystem II dimer. Simultaneously, cells also initiated accumulation of carotenoids, especially ɣ-carotene, the main precursor of all carotenoids. In the last phase, in addition to ɣ-carotene, we also observed accumulation of myxoxanthophyll and more even spatial distribution of photosystems and phycobilisomes between microdomains. We suggest that the overall carotenoid increase during HL stress could be involved either in the direct photoprotection (e.g., in ROS scavenging) and/or could play an additional role in maintaining optimal distribution of photosystems in thylakoid membrane to attain efficient photoprotection.


Asunto(s)
Carotenoides/metabolismo , Luz , Synechocystis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Tamaño de la Célula/efectos de la radiación , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Synechocystis/efectos de la radiación , Tilacoides/metabolismo , Tilacoides/efectos de la radiación
11.
J Proteomics ; 246: 104306, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34157441

RESUMEN

In cyanobacteria, it is known that the excitation ratios of photosystem (PS) I and PSII changes with the wavelength of irradiated light due to mobile phycobilisome (PBS) and spillover, affecting the photosynthetic ATP/NADPH synthesis ratio and metabolic flux state. However, the mechanisms by which these changes are controlled have not been well studied. In this study, we performed a targeted proteomic analysis of Synechocystis sp. PCC 6803 under different spectral light conditions to clarify the regulation mechanisms of mobile PBS, spillover and metabolisms under different light qualities at the protein level. The results showed an increase in the amount of proteins mainly involved in CO2 fixation under Red1 light conditions with a high specific growth rate, suggesting that the rate of intracellular metabolism is controlled by the rate of carbon uptake, not by changes in the amount of each enzyme. Correlation analysis between protein levels and PSI/PSII excitation ratios revealed that PsbQUY showed high correlations and significantly increased under Blue and Red2 light conditions, where the PSI/PSII excitation ratio was higher due to spillover. In the strains lacking the genes encoding these proteins, a decrease in the PSI/PSII excitation ratio was observed, suggesting that PsbQUY contribute to spillover occurrence. SIGNIFICANCE: In cyanobacteria, the photosynthetic apparatus's responses, such as state transition [mobile PBS and spillover], occur due to the intensity and wavelength of irradiated light, resulting in changes in photosynthetic electron transport and metabolic flux states. Previous studies have analyzed the response of Synechocystis sp. PCC 6803 to light intensity from various directions, but only spectroscopic analysis of the photosynthetic apparatus has been done on the response to changes in the wavelength of irradiated light. This study analyzed the response mechanisms of mobile PBS, spillover, photosynthetic, and metabolic systems in Synechocystis sp. PCC 6803 under six different spectral light conditions by a targeted proteomic analysis. As a result, many proteins were successfully quantified, and the metabolic enzymes and photosynthetic apparatus were analyzed using an integrated approach. Principal component and correlation analyses and volcano plots revealed that the PSII subunits PsbQ, PsbU, and PsbY have a strong correlation with the PSI/PSII excitation ratio and contribute to spillover occurrence. Thus, statistical analysis based on proteome data revealed that PsbQ, PsbU, and PsbY are involved in spillover, as revealed by spectroscopic analysis.


Asunto(s)
Proteoma , Synechocystis , Proteínas Bacterianas/metabolismo , Luz , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Ficobilisomas , Proteómica , Synechocystis/metabolismo , Synechocystis/efectos de la radiación
12.
ACS Synth Biol ; 10(6): 1417-1428, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34003632

RESUMEN

1-Octanol has gained interest as a chemical precursor for both high and low value commodities including fuel, solvents, surfactants, and fragrances. By harnessing the power from sunlight and CO2 as carbon source, cyanobacteria has recently been engineered for renewable production of 1-octanol. The productivity, however, remained low. In the present work, we report efforts to further improve the 1-octanol productivity. Different N-terminal truncations were evaluated on three thioesterases from different plant species, resulting in several candidate thioesterases with improved activity and selectivity toward octanoyl-ACP. The structure/function trials suggest that current knowledge and/or state-of-the art computational tools are insufficient to determine the most appropriate cleavage site for thioesterases in Synechocystis. Additionally, by tuning the inducer concentration and light intensity, we further improved the 1-octanol productivity, reaching up to 35% (w/w) carbon partitioning and a titer of 526 ± 5 mg/L 1-octanol in 12 days. Long-term cultivation experiments demonstrated that the improved strain can be stably maintained for at least 30 days and/or over ten times serial dilution. Surprisingly, the improved strain was genetically stable in contrast to earlier strains having lower productivity (and hence a reduced chance of reaching toxic product concentrations). Altogether, improved enzymes and environmental conditions (e.g., inducer concentration and light intensity) substantially increased the 1-octanol productivity. When cultured under continuous conditions, the bioproduction system reached an accumulative titer of >3.5 g/L 1-octanol over close to 180 days.


Asunto(s)
1-Octanol/metabolismo , Ingeniería Metabólica/métodos , Synechocystis/genética , Synechocystis/metabolismo , 1-Octanol/análisis , Biocombustibles , Ácidos Grasos no Esterificados/análisis , Ácidos Grasos no Esterificados/biosíntesis , Luz , Plásmidos/genética , Synechocystis/efectos de la radiación , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
13.
Plant Cell ; 33(2): 358-380, 2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33793852

RESUMEN

Phycobilisomes (PBSs), the principal cyanobacterial antenna, are among the most efficient macromolecular structures in nature, and are used for both light harvesting and directed energy transfer to the photosynthetic reaction center. However, under unfavorable conditions, excess excitation energy needs to be rapidly dissipated to avoid photodamage. The orange carotenoid protein (OCP) senses light intensity and induces thermal energy dissipation under stress conditions. Hence, its expression must be tightly controlled; however, the molecular mechanism of this regulation remains to be elucidated. Here, we describe the discovery of a posttranscriptional regulatory mechanism in Synechocystis sp. PCC 6803 in which the expression of the operon encoding the allophycocyanin subunits of the PBS is directly and in an inverse fashion linked to the expression of OCP. This regulation is mediated by ApcZ, a small regulatory RNA that is derived from the 3'-end of the tetracistronic apcABC-apcZ operon. ApcZ inhibits ocp translation under stress-free conditions. Under most stress conditions, apc operon transcription decreases and ocp translation increases. Thus, a key operon involved in the collection of light energy is functionally connected to the expression of a protein involved in energy dissipation. Our findings support the view that regulatory RNA networks in bacteria evolve through the functionalization of mRNA 3'-UTRs.


Asunto(s)
Complejos de Proteína Captadores de Luz/metabolismo , Luz , ARN Bacteriano/metabolismo , Synechocystis/metabolismo , Synechocystis/efectos de la radiación , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Modelos Biológicos , Mutación/genética , Operón/genética , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Synechocystis/genética
14.
Commun Biol ; 4(1): 343, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727624

RESUMEN

Increased tolerance to light stress in cyanobacteria is a desirable feature for their applications. Here, we obtained a high light tolerant (Tol) strain of Synechocystis sp. PCC6803 through an adaptive laboratory evolution, in which the cells were repeatedly sub-cultured for 52 days under high light stress conditions (7000 to 9000 µmol m-2 s-1). Although the growth of the parental strain almost stopped when exposed to 9000 µmol m-2 s-1, no growth inhibition was observed in the Tol strain. Excitation-energy flow was affected because of photosystem II damage in the parental strain under high light conditions, whereas the damage was alleviated and normal energy flow was maintained in the Tol strain. The transcriptome data indicated an increase in isiA expression in the Tol strain under high light conditions. Whole genome sequence analysis and reverse engineering revealed two mutations in hik26 and slr1916 involved in high light stress tolerance in the Tol strain.


Asunto(s)
Adaptación Fisiológica , Proteínas Bacterianas/genética , Luz , Mutación , Estrés Fisiológico , Synechocystis/genética , Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica Arqueal , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Synechocystis/crecimiento & desarrollo , Synechocystis/metabolismo , Synechocystis/efectos de la radiación , Transcriptoma
15.
Plant Sci ; 304: 110798, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33568297

RESUMEN

Cyanobacterial type I NADH dehydrogenase (NDH-1) is involved in various bioenergetic reactions including respiration, cyclic electron transport (CET), and CO2 uptake. The role of NDH-1 is usually minor under normal growth conditions and becomes important under stress conditions. However, in our previous study, flux balance analysis (FBA) simulation predicted that the drive of NDH-1 as CET pathway with a photosystem (PS) I/PSII excitation ratio around 1.0 contributes to achieving an optimal specific growth rate. In this study, to experimentally elucidate the predicted functions of NDH-1, first, we measured the PSI/PSII excitation ratios of Synechocystis sp. PCC 6803 grown under four types of spectral light conditions. The specific growth rate was the highest and PSI/PSII excitation ratio was with 0.88 under the single-peak light at 630 nm (Red1). Considering this measured excitation ratios, FBA simulation predicted that NDH-1-dependent electron transport was the major pathway under Red1. Moreover, in actual culture, an NDH-1 deletion strain had slower growth rate than that of wild type only under Red1 light condition. Therefore, we experimentally demonstrated that NDH-1 plays an important role under optimal light conditions such as Red1 light, where Synechocystis exhibits the highest specific growth rate and PSI/PSII excitation ratio of around 1.0.


Asunto(s)
Proteínas Bacterianas/fisiología , Complejo I de Transporte de Electrón/fisiología , Ficobilisomas/farmacología , Synechocystis/enzimología , Proteínas Bacterianas/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Luz , Consumo de Oxígeno , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Synechocystis/efectos de los fármacos , Synechocystis/crecimiento & desarrollo , Synechocystis/efectos de la radiación
16.
Mar Biotechnol (NY) ; 23(1): 31-38, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32979137

RESUMEN

In this study, we developed a green light-regulated T7 RNA polymerase expression system (T7 RNAP system), to provide a novel and versatile high-expression system for cyanobacteria without using any chemical inducer, realizing high expression levels comparable with previously reported for recombinant gene expression in cyanobacteria. The T7 RNAP system was constructed and introduced into Synechocystis sp. PCC6803. T7 RNAP was inserted downstream of the cpcG2 promoter, which is recognized and activated by the CcaS/CcaR two-component green-light-sensing system, to compose a vector plasmid, pKT-CS01, to achieve the induction of T7 RNAP expression only under green light illumination, with repression under red light illumination. The reporter gene, superfolder green fluorescent protein (sfGFP), was inserted downstream of the T7 promoter. Transcriptional analyses revealed that T7 RNAP was induced under green light but repressed under red light. Expression of the sfGFP protein derived from pKT-CS01 was observed under green light illumination and was approximately 10-fold higher than that in the control transformant, which expressed sfGFP directly under the cpcG2 promoter, which is directly regulated by CcaS/CcaR, under green light illumination. Comparison with the strong promoter expression systems Pcpc560 and PtrcΔlacO revealed that the expression of sfGFP by the T7 RNAP system was comparable with the levels obtained with strong promoters. These results demonstrated that the green light-regulated T7 RNAP gene expression system will be a versatile tool for future technological platform to regulate gene expression in cyanobacterial bioprocesses.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Synechocystis/genética , Proteínas Virales , Proteínas Bacterianas , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Luz , Plásmidos , Regiones Promotoras Genéticas , Synechocystis/efectos de la radiación
17.
Photosynth Res ; 147(1): 75-90, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33245462

RESUMEN

In this work, we reconstructed the absorption spectrum of different Synechocystis sp. PCC 6803 optical strains by summing the computed signature of all pigments present in this organism. To do so, modifications to in vitro pigment spectra were first required: namely wavelength shift, curve smoothing, and the package effect calculation derived from high pigment densities were applied. As a result, we outlined a plausible shape for the in vivo absorption spectrum of each chromophore. These are flatter and slightly broader in physiological conditions yet the mean weight-specific absorption coefficient remains identical to the in vitro conditions. Moreover, we give an estimate of all pigment concentrations without applying spectrophotometric correlations, which are often prone to error. The computed cell spectrum reproduces in an accurate manner the experimental spectrum for all the studied wavelengths in the wild-type, Olive, and PAL strain. The gathered pigment concentrations are in agreement with reported values in literature. Moreover, different illumination set-ups were evaluated to calculate the mean absorption cross-section of each chromophore. Finally, a qualitative estimate of light-limited cellular growth at each wavelength is given. This investigation describes a novel way to approach the cell absorption spectrum and shows all its inherent potential for photosynthesis research.


Asunto(s)
Fotosíntesis , Pigmentos Biológicos/análisis , Synechocystis/fisiología , Mutación , Pigmentos Biológicos/metabolismo , Espectrofotometría , Synechocystis/genética , Synechocystis/efectos de la radiación
18.
Plant Cell Physiol ; 62(1): 178-190, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33258963

RESUMEN

Photosystem II (PSII) is a large membrane protein complex performing primary charge separation in oxygenic photosynthesis. The biogenesis of PSII is a complicated process that involves a coordinated linking of assembly modules in a precise order. Each such module consists of one large chlorophyll (Chl)-binding protein, number of small membrane polypeptides, pigments and other cofactors. We isolated the CP47 antenna module from the cyanobacterium Synechocystis sp. PCC 6803 and found that it contains a 11-kDa protein encoded by the ssl2148 gene. This protein was named Psb35 and its presence in the CP47 module was confirmed by the isolation of FLAG-tagged version of Psb35. Using this pulldown assay, we showed that the Psb35 remains attached to CP47 after the integration of CP47 into PSII complexes. However, the isolated Psb35-PSIIs were enriched with auxiliary PSII assembly factors like Psb27, Psb28-1, Psb28-2 and RubA while they lacked the lumenal proteins stabilizing the PSII oxygen-evolving complex. In addition, the Psb35 co-purified with a large unique complex of CP47 and photosystem I trimer. The absence of Psb35 led to a lower accumulation and decreased stability of the CP47 antenna module and associated high-light-inducible proteins but did not change the growth rate of the cyanobacterium under the variety of light regimes. Nevertheless, in comparison with WT, the Psb35-less mutant showed an accelerated pigment bleaching during prolonged dark incubation. The results suggest an involvement of Psb35 in the life cycle of cyanobacterial Chl-binding proteins, especially CP47.


Asunto(s)
Proteínas Bacterianas/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Synechocystis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Proteínas Bacterianas/efectos de la radiación , Luz , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/fisiología , Estructura Terciaria de Proteína , Synechocystis/efectos de la radiación
19.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053769

RESUMEN

Free fatty acids (FFA) generated in cyanobacterial cells can be utilized for the biodiesel that is required for our sustainable future. The combination of FFA and strong light induces severe photoinhibition of photosystem II (PSII), which suppresses the production of FFA in cyanobacterial cells. In the present study, we examined the effects of exogenously added FFA on the photoinhibition of PSII in Synechocystis sp. PCC 6803. The addition of lauric acid (12:0) to cells accelerated the photoinhibition of PSII by inhibiting the repair of PSII and the de novo synthesis of D1. α-Linolenic acid (18:3) affected both the repair of and photodamage to PSII. Surprisingly, palmitic (16:0) and stearic acids (18:0) enhanced the repair of PSII by accelerating the de novo synthesis of D1 with the mitigation of the photoinhibition of PSII. Our results show chemical potential of FFA in the regulation of PSII without genetic manipulation.


Asunto(s)
Ácido Palmítico/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Ácidos Esteáricos/metabolismo , Cianobacterias/efectos de los fármacos , Cianobacterias/fisiología , Cianobacterias/efectos de la radiación , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Luz , Ácido Palmítico/farmacología , Fotosíntesis/efectos de los fármacos , Ácidos Esteáricos/farmacología , Synechocystis/efectos de los fármacos , Synechocystis/fisiología , Synechocystis/efectos de la radiación
20.
Photosynth Res ; 146(1-3): 259-278, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32734447

RESUMEN

Measurements of OJIP-SMT patterns of fluorescence induction (FI) in Synechocystis sp. PCC 6803 (Synechocystis) cells on a time scale up to several minutes were mathematically treated within the framework of thylakoid membrane (T-M) model (Belyaeva et al., Photosynth Res 140:1-19, 2019) that was renewed to account for the state transitions effects. Principles of describing electron transfer in reaction centers of photosystems II and I (PSII and PSI) and cytochrome b6f complex remained unchanged, whereas parameters for dissipative reactions of non-radiative charge recombination were altered depending on the oxidation state of QB-site (neutral, reduced by one electron, empty, reduced by two electrons). According to our calculations, the initial content of plastoquinol (PQH2) in the total quinone pool of Synechocystis cells adapted to darkness for 10 min ranged between 20 and 40%. The results imply that the PQ pool mediates photosynthetic and respiratory charge flows. The redistribution of PBS antenna units responsible for the increase of Chl fluorescence in cyanobacteria (qT2 → 1) upon state 2 → 1 transition or the fluorescence lowering (qT1 → 2) due to state 1 → 2 transition were described in the model by exponential functions. Parameters of dynamically changed effective cross section were found by means of simulations of OJIP-SMT patterns observed on Synechocystis cells upon strong (3000 µmol photons m-2s-1) and moderate (1000 µmol photons m-2s-1) actinic light intensities. The corresponding light constant values kLΣAnt = 1.2 ms-1 and 0.4 ms-1 define the excitation of total antenna pool dynamically redistributed between PSII and PSI reaction centers. Although the OCP-induced quenching of antenna excitation is not involved in the model, the main features of the induction signals have been satisfactorily explained. In the case of strong illumination, the effective cross section decreases by approximately 33% for irradiated Synechocystis cells as compared to untreated cells. Under moderate light, the irradiated Synechocystis cells showed in simulations the same cross section as the untreated cells. The thylakoid model renewed with state transitions description allowed simulation of fluorescence induction OJIP-SMT curves detected on time scale from microseconds to minutes.


Asunto(s)
Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Synechocystis/fisiología , Clorofila/metabolismo , Complejo de Citocromo b6f/metabolismo , Oscuridad , Transporte de Electrón , Luz , Oxidación-Reducción , Synechocystis/efectos de la radiación , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA