Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 830
Filtrar
1.
Methods Mol Biol ; 2854: 61-74, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39192119

RESUMEN

With the rapid development of CRISPR-Cas9 technology, gene editing has become a powerful tool for studying gene function. Specifically, in the study of the mechanisms by which natural immune responses combat viral infections, gene knockout mouse models have provided an indispensable platform. This article describes a detailed protocol for constructing gene knockout mice using the CRISPR-Cas9 system. This field focuses on the design of single-guide RNAs (sgRNAs) targeting the antiviral immune gene cGAS, embryo microinjection, and screening and verification of gene editing outcomes. Furthermore, this study provides methods for using cGAS gene knockout mice to analyze the role of specific genes in natural immune responses. Through this protocol, researchers can efficiently generate specific gene knockout mouse models, which not only helps in understanding the functions of the immune system but also offers a powerful experimental tool for exploring the mechanisms of antiviral innate immunity.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Inmunidad Innata , Ratones Noqueados , ARN Guía de Sistemas CRISPR-Cas , Animales , Inmunidad Innata/genética , Ratones , ARN Guía de Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Técnicas de Inactivación de Genes/métodos , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Virosis/inmunología , Virosis/genética
2.
Xenotransplantation ; 31(4): e12879, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166818

RESUMEN

Transplantation remains the preferred treatment for end-stage kidney disease but is critically limited by the number of available organs. Xenografts from genetically modified pigs have become a promising solution to the loss of life while waiting for transplantation. However, the current clinical model for xenotransplantation will require off-site procurement, leading to a period of ischemia during transportation. As of today, there is limited understanding regarding the preservation of these organs, including the duration of viability, and the associated molecular changes. Thus, our aim was to evaluate the effects of static cold storage (SCS) on α1,3-galactosyltransferase knockout (GGTA1 KO) kidney. After SCS, viability was further assessed using acellular sub-normothermic ex vivo perfusion and simulated transplantation with human blood. Compared to baseline, tubular and glomerular interstitium was preserved after 2 days of SCS in both WT and GGTA1 KO kidneys. Bulk RNA-sequencing demonstrated that only eight genes were differentially expressed after SCS in GGTA1 KO kidneys. During sub-normothermic perfusion, kidney function, reflected by oxygen consumption, urine output, and lactate production was adequate in GGTA1 KO grafts. During a simulated transplant with human blood, macroscopic and histological assessment revealed minimal kidney injury. However, GGTA1 KO kidneys exhibited higher arterial resistance, increased lactate production, and reduced oxygen consumption during the simulated transplant. In summary, our study suggests that SCS is feasible for the preservation of porcine GGTA1 KO kidneys. However, alternative preservation methods should be evaluated for extended preservation of porcine grafts.


Asunto(s)
Galactosiltransferasas , Trasplante de Riñón , Riñón , Preservación de Órganos , Trasplante Heterólogo , Animales , Trasplante Heterólogo/métodos , Trasplante de Riñón/métodos , Galactosiltransferasas/genética , Galactosiltransferasas/deficiencia , Porcinos , Preservación de Órganos/métodos , Humanos , Animales Modificados Genéticamente , Perfusión/métodos , Xenoinjertos , Criopreservación/métodos , Técnicas de Inactivación de Genes/métodos , Ratones
3.
Xenotransplantation ; 31(4): e12878, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166823

RESUMEN

Hepatocyte transplantation and bioartificial liver (BAL) systems hold significant promise as less invasive alternatives to traditional transplantation, providing crucial temporary support for patients with acute and chronic liver failure. Although human hepatocytes are ideal, their use is limited by ethical concerns and donor availability, leading to the use of porcine hepatocytes in BAL systems due to their functional similarities. Recent advancements in gene-editing technology have improved porcine organ xenotransplantation clinical trials by addressing immune rejection issues. Gene-edited pigs, such as alpha-1,3-galactosyltransferase (GGTA1) knockout pigs, offer a secure source of primary cells for BAL systems. Our research focuses on optimizing the safety and functionality of porcine primary hepatocytes during large-scale cultivation. We achieved this by creating GGTA1 knockout pigs through one-step delivery of CRISPR/Cas9 to pig zygotes via oviduct injection of rAAV, and enhancing hepatocyte viability and function by co-culturing hepatocytes with Roof plate-specific spondin 1 overexpressing HUVECs (R-HUVECs). Using a Rocker culture system, approximately 1010 primary porcine hepatocytes and R-HUVECs rapidly formed organoids with a diameter of 92.1 ± 28.1 µm within 24 h. These organoids not only maintained excellent functionality but also supported partial hepatocyte self-renewal during long-term culture over 28 days. Gene-edited primary porcine hepatocyte organoids will significantly advance the applications of hepatocyte transplantation and BAL systems.


Asunto(s)
Galactosiltransferasas , Edición Génica , Hepatocitos , Hígado Artificial , Organoides , Trasplante Heterólogo , Animales , Galactosiltransferasas/genética , Porcinos , Trasplante Heterólogo/métodos , Organoides/metabolismo , Edición Génica/métodos , Humanos , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes/métodos , Técnicas de Cocultivo/métodos
4.
Acta Neuropathol Commun ; 12(1): 125, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39107797

RESUMEN

Sonic hedgehog subgroup of medulloblastoma (SHH-MB) is characterized by aberrant activation of the SHH signaling pathway. An inhibition of the positive SHH regulator Smoothened (SMO) has demonstrated promising clinical efficacy. Yet, primary and acquired resistance to SMO inhibitors limit their efficacy. An understanding of underlying molecular mechanisms of resistance to therapy is warranted to bridge this unmet need. Here, we make use of genome-wide CRISPR-Cas9 knockout screens in murine SMB21 and human DAOY cells, in order to unravel genetic dependencies and drug-related genetic interactors that could serve as alternative therapeutic targets for SHH-MB. Our screens reinforce SMB21 cells as a faithful model system for SHH-MB, as opposed to DAOY cells, and identify members of the epigenetic machinery including DNA methyltransferase 1 (DNMT1) as druggable targets in SHH-dependent tumors. We show that Dnmt1 plays a crucial role in normal murine cerebellar development and is required for SHH-MB growth in vivo. Additionally, DNMT1 pharmacological inhibition alone and in combination with SMO inhibition effectively inhibits tumor growth in murine and human SHH-MB cell models and prolongs survival of SHH-MB mouse models by inhibiting SHH signaling output downstream of SMO. In conclusion, our data highlight the potential of inhibiting epigenetic regulators as a novel therapeutic avenue in SMO-inhibitor sensitive as well as resistant SHH-MBs.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias Cerebelosas , ADN (Citosina-5-)-Metiltransferasa 1 , Proteínas Hedgehog , Meduloblastoma , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patología , Animales , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Humanos , Ratones , Línea Celular Tumoral , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Técnicas de Inactivación de Genes/métodos
5.
Neurosci Lett ; 837: 137921, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39106917

RESUMEN

Parkinson's disease (PD), which is the second most common neurodegenerative disorder, is characterized by progressive movement impairment and loss of midbrain dopaminergic neurons in the substantia nigra. Although mutations in TMEM230 are linked to familial PD, the pathogenic mechanism underlying TMEM230-associated PD remains to be elucidated. To explore the effect of TMEM230 depletion in vivo, we created TMEM230 knockout rats using CRISPR-Cas9 technology. TMEM230 knockout rats did not exhibit any core features of PD, including impaired motor function, loss of dopaminergic neurons in the substantia nigra, or altered expression of proteins related to autophagy, the Rab family, or vesicular trafficking. In addition, no glial reactions were observed in TMEM230 knockout rats. These results indicate that depletion of TMEM230 may not lead to dopaminergic neuron degeneration in rats, further supporting that PD-associated TMEM230 mutations lead to dopaminergic neuron death by gain-of-toxic function.


Asunto(s)
Neuronas Dopaminérgicas , Animales , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/metabolismo , Ratas , Proteínas de la Membrana/genética , Sustancia Negra/patología , Sustancia Negra/metabolismo , Técnicas de Inactivación de Genes/métodos , Masculino , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Ratas Sprague-Dawley
6.
Drug Metab Dispos ; 52(9): 957-965, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39038952

RESUMEN

The organic anion transporting polypeptide (OATP) 2B1 is considered an emerging drug transporter that is found expressed in pharmacokinetically relevant organs such as the liver, small intestine, and kidney. Despite its interaction with various substrate drugs, the understanding of its in vivo relevance is still limited. In this study, we first validated the interaction of atorvastatin with rat OATP2B1 using transiently transfected HeLa cells. Moreover, we characterized our rSlco2b1-knockout and SLCO2B1-knockin rats for mRNA, protein expression, and localization of OATP2B1 in the liver, small intestine, and kidney. The transporter showed the highest expression in the liver followed by the small intestine. In humanized rats, human OATP2B1 is localized on the sinusoidal membrane of hepatocytes. In enterocytes of wild-type and humanized rats, the transporter was detected in the luminal membrane with the vast majority being localized subapical. Subsequently, we assessed atorvastatin pharmacokinetics in male wild-type, rSlco2b1-knockout, and SLCO2B1-knockin rats after a single-dose administration (orally and intravenously). Investigating the contribution of rat OATP2B1 or human OATP2B1 to oral atorvastatin pharmacokinetics revealed no differences in concentration-time profiles or pharmacokinetic parameters. However, when comparing the pharmacokinetics of atorvastatin after intravenous administration in SLCO2B1-humanized rats and knockout animals, notable differences were observed. In particular, the systemic exposure (area under the curve) decreased by approximately 40% in humanized animals, whereas the clearance was 57% higher in animals expressing human OATP2B1. These findings indicate that human OATP2B1 influences pharmacokinetics of atorvastatin after intravenous administration, most likely by contributing to the hepatic uptake. SIGNIFICANCE STATEMENT: Wild-type, rSlco2b1-knockout, and SLCO2B1-humanized Wistar rats were characterized for the expression of rat and human SLCO2B1/OATP2B1. Pharmacokinetic studies of atorvastatin over 24 hours were conducted in male wild-type, rSlco2b1-knockout, and SLCO2B1-humanized rats. After a single-dose intravenous administration, a lower systemic exposure and an increase in clearance were observed in SLCO2B1-humanized rats compared with knockout animals indicating a contribution of OATP2B1 to the hepatic clearance.


Asunto(s)
Atorvastatina , Hígado , Transportadores de Anión Orgánico , Animales , Atorvastatina/farmacocinética , Atorvastatina/administración & dosificación , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Humanos , Masculino , Ratas , Hígado/metabolismo , Células HeLa , Ratas Transgénicas , Intestino Delgado/metabolismo , Técnicas de Inactivación de Genes/métodos , Riñón/metabolismo , Técnicas de Sustitución del Gen/métodos , Administración Oral , Administración Intravenosa , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Hepatocitos/metabolismo , Distribución Tisular
7.
Microb Cell Fact ; 23(1): 217, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085844

RESUMEN

BACKGROUND: The yeast Komagataella phaffii is widely used for manufacturing recombinant proteins, but secreted titers of recombinant proteins could be improved by genetic engineering. In this study, we hypothesized that cellular resources could be redirected from production of endogenous proteins to production of recombinant proteins by deleting unneeded endogenous proteins. In non-model microorganisms such as K. phaffii, however, genetic engineering is limited by lack gene annotation and knowledge of gene essentiality. RESULTS: We identified a set of endogenous secreted proteins in K. phaffii by mass spectrometry and signal peptide prediction. Our efforts to disrupt these genes were hindered by limited annotation of essential genes. To predict essential genes, therefore, we designed, transformed, and sequenced a pooled library of guide RNAs for CRISPR-Cas9-mediated knockout of all endogenous secreted proteins. We then used predicted gene essentiality to guide iterative disruptions of up to 11 non-essential genes. Engineered strains exhibited a ~20× increase in the production of human serum albumin and a twofold increase in the production of a monoclonal antibody. CONCLUSIONS: We demonstrated that disruption of as few as six genes can increase production of recombinant proteins. Further reduction of the endogenous proteome of K. phaffii may further improve strain performance. The pooled library of secretome-targeted guides for CRISPR-Cas9 and knowledge of gene essentiality reported here will facilitate future efforts to engineer K. phaffii for production of other recombinant proteins and enzymes.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas Recombinantes , Saccharomycetales , Saccharomycetales/genética , Saccharomycetales/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Humanos , Técnicas de Inactivación de Genes/métodos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteoma/metabolismo , Anticuerpos Monoclonales/biosíntesis , Albúmina Sérica Humana/genética , Albúmina Sérica Humana/metabolismo
8.
Genes (Basel) ; 15(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39062741

RESUMEN

The identification of accurate gene insertion sites on chicken sex chromosomes is crucial for advancing sex control breeding materials. In this study, the intergenic region NC_006127.4 on the chicken Z chromosome and the non-repetitive sequence EE0.6 on the W chromosome were selected as potential gene insertion sites. Gene knockout vectors targeting these sites were constructed and transfected into DF-1 cells. T7E1 enzyme cleavage and luciferase reporter enzyme analyses revealed knockout efficiencies of 80.00% (16/20), 75.00% (15/20), and 75.00% (15/20) for the three sgRNAs targeting the EE0.6 site. For the three sgRNAs targeting the NC_006127.4 site, knockout efficiencies were 70.00% (14/20), 60.00% (12/20), and 45.00% (9/20). Gel electrophoresis and high-throughput sequencing were performed to detect potential off-target effects, showing no significant off-target effects for the knockout vectors at the two sites. EdU and CCK-8 proliferation assays revealed no significant difference in cell proliferation activity between the knockout and control groups. These results demonstrate that the EE0.6 and NC_006127.4 sites can serve as gene insertion sites on chicken sex chromosomes for gene editing without affecting normal cell proliferation.


Asunto(s)
Pollos , Edición Génica , Cromosomas Sexuales , Animales , Pollos/genética , Edición Génica/métodos , Cromosomas Sexuales/genética , Mutagénesis Insercional , Sistemas CRISPR-Cas , Línea Celular , Técnicas de Inactivación de Genes/métodos , Femenino , Masculino
9.
Gene ; 927: 148748, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38969245

RESUMEN

Biomineralization processes in bivalves, particularly the initial production of molecular components (such as matrix deposition and calcification) in the early stages of shell development are highly complex and well-organized. This study investigated the temporal dynamics of organic matrix and calcium carbonate (CaCO3) deposition in Pacific oysters (Crassostrea gigas) across various development stages. The shell-field initiated matrix secretion during the gastrula stage. Subsequent larval development triggered central shell-field calcification, accompanied by expansion of the calcium ring from its interior to the periphery. Notably, the expression patterns of CgTyrp-2 and CgTyr closely correlated with matrix deposition and calcification during early developmental stages, with peak expression occurring in oyster's gastrula and D-veliger stages. Subsequently, the CRISPR/Cas9 system was utilized to knock out CgTyrp-2 and CgTyr with more distinct phenotypic alterations observed when both genes were concurrently knocked out. The relative gene expression was analyzed post-knockout, indicating that the knockout of CgTyr or CgTyrp-2 led to reduced expression of CgChs1, along with increased expression of CgChit4. Furthermore, when dual-sgRNAs were employed to knockout CgTyrp-2, a large deletion (2 kb) within the CgTyrp-2 gene was identified. In summary, early shell formation in C. gigas is the result of a complex interplay of multiple molecular components with CgTyrp-2 and CgTyr playing key roles in regulating CaCO3 deposition.


Asunto(s)
Exoesqueleto , Sistemas CRISPR-Cas , Calcificación Fisiológica , Carbonato de Calcio , Crassostrea , Técnicas de Inactivación de Genes , Animales , Crassostrea/genética , Crassostrea/crecimiento & desarrollo , Crassostrea/metabolismo , Exoesqueleto/metabolismo , Exoesqueleto/crecimiento & desarrollo , Técnicas de Inactivación de Genes/métodos , Calcificación Fisiológica/genética , Carbonato de Calcio/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , Biomineralización/genética
10.
Methods Mol Biol ; 2830: 137-148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977575

RESUMEN

Knockout mutants provide definitive information about the functions of genes related to agronomic traits, including seed dormancy. However, it takes many years to produce knockout mutants using conventional techniques in polyploid plants such as hexaploid wheat. Genome editing with sequence-specific nucleases is a promising approach for obtaining knockout mutations in all targeted homoeologs of wheat simultaneously. Here, we describe a procedure to produce a triple recessive mutant in wheat via genome editing. This protocol covers the evaluation of gRNA and Agrobacterium-mediated transformation to obtain edited wheat seedlings.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Técnicas de Inactivación de Genes , Latencia en las Plantas , Triticum , Triticum/genética , Edición Génica/métodos , Latencia en las Plantas/genética , Técnicas de Inactivación de Genes/métodos , Mutación , Plantas Modificadas Genéticamente/genética , Genoma de Planta , ARN Guía de Sistemas CRISPR-Cas/genética , Semillas/genética , Genes de Plantas , Agrobacterium/genética , Plantones/genética
11.
Mol Genet Genomics ; 299(1): 74, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39085666

RESUMEN

Derivation of hypoimmunogenic human cells from genetically manipulated pluripotent stem cells holds great promise for future transplantation medicine and adoptive immunotherapy. Disruption of beta-2-microglobulin (B2M) in pluripotent stem cells followed by differentiation into specialized cell types is a promising approach to derive hypoimmunogenic cells. Given the attractive features of CRISPR/Cas9-based gene editing tool and baculoviral delivery system, baculovirus can deliver CRISPR/Cas9 components for site-specific gene editing of B2M. Herein, we report the development of a baculoviral CRISPR/Cas9 vector system for the B2M locus disruption in human cells. When tested in human embryonic stem cells (hESCs), the B2M gene knockdown/out was successfully achieved, leading to the stable down-regulation of human leukocyte antigen class I expression on the cell surface. Fibroblasts derived from the B2M gene-disrupted hESCs were then used as stimulator cells in the co-cultures with human peripheral blood mononuclear cells. These fibroblasts triggered significantly reduced alloimmune responses as assessed by sensitive Elispot assays. The B2M-negative hESCs maintained the pluripotency and the ability to differentiate into three germ lineages in vitro and in vivo. These findings demonstrated the feasibility of using the baculoviral-CRISPR/Cas9 system to establish B2M-disrupted pluripotent stem cells. B2M knockdown/out sufficiently leads to hypoimmunogenic conditions, thereby supporting the potential use of B2M-negative cells as universal donor cells for allogeneic cell therapy.


Asunto(s)
Baculoviridae , Sistemas CRISPR-Cas , Diferenciación Celular , Edición Génica , Vectores Genéticos , Células Madre Pluripotentes , Microglobulina beta-2 , Humanos , Microglobulina beta-2/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Baculoviridae/genética , Edición Génica/métodos , Vectores Genéticos/genética , Diferenciación Celular/genética , Técnicas de Inactivación de Genes/métodos , Animales , Fibroblastos/metabolismo , Fibroblastos/citología , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Ratones
12.
Mol Cells ; 47(7): 100087, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38936509

RESUMEN

Genome editing has developed rapidly in various research fields for targeted genome modifications in many organisms, including cells, plants, viruses, and animals. The clustered regularly interspaced short palindromic repeats-associated protein 9 system stands as a potent tool in gene editing for generating cells and animal models with high precision. The clinical potential of clustered regularly interspaced short palindromic repeats-associated protein 9 has been extensively reported, with applications in genetic disease correction, inhibition of viral replication, and personalized or targeted therapeutics for various cancers. In this study, we provide a guide on single-guide RNA design, cloning single-guide RNA into plasmid vectors, single-cell isolation via transfection, and identification of knockout clones using next-generation sequencing. In addition, by providing the results of insertion into mammalian cell lines through next-generation sequencing, we offer useful information to those conducting research on human and animal cell lines.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Técnicas de Inactivación de Genes , ARN Guía de Sistemas CRISPR-Cas , Humanos , Técnicas de Inactivación de Genes/métodos , Edición Génica/métodos , ARN Guía de Sistemas CRISPR-Cas/genética , Animales , Análisis de la Célula Individual/métodos , Línea Celular , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
13.
Fungal Genet Biol ; 173: 103910, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897560

RESUMEN

The homologous recombination strategy has a long history of editing Saccharomyces cerevisiae target genes. The application of CRISPR/Cas9 strategy to editing target genes in S. cerevisiae has also received a lot of attention in recent years. All findings seem to indicate that editing relevant target genes in S. cerevisiae is an extremely easy event. In this study, we systematically analyzed the advantages and disadvantages of homologous recombination (HR) strategy, CRISPR/Cas9 strategy, and CRISPR/Cas9 combined homology-mediated repair (CRISPR/Case9-HDR) strategy in knocking out BY4742 ade2. Our data showed that when the ade2 was knocked out by HR strategy, a large number of clones appeared to be off-target, and 10 %-80 % of the so-called knockout clones obtained were heteroclones. When the CRISPR/Cas9 strategy was applied, 60% of clones were off-target and the rest were all heteroclones. Interestingly, most of the cells were edited successfully, but at least 60 % of the clones were heteroclones, when the CRISPR/Cas9-HDR strategy was employed. Our results clearly showed that the emergence of heteroclone seems inevitable regardless of the strategies used for editing BY4742 ade2. Given the characteristics of BY4742 defective in ade2 showing red on the YPD plate, we attempted to build an efficient yeast gene editing strategy, in which the CRISPR/Cas9 combines homology-mediated repair template carrying an ade2 expression cassette, BY4742(ade2Δ0) as the start strain. We used this strategy to successfully achieve 100 % knockout efficiency of trp1, indicating that technical challenges of how to easily screen out pure knockout clones without color phenotype have been solved. Our data showed in this study not only establishes an efficient yeast gene knockout strategy with dual auxotrophy coupled red labeling but also provides new ideas and references for the knockout of target genes in the monokaryotic mycelium of macrofungi.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Recombinación Homóloga , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Recombinación Homóloga/genética , Genoma Fúngico/genética , Técnicas de Inactivación de Genes/métodos , Proteínas de Saccharomyces cerevisiae/genética
14.
Arch Gerontol Geriatr ; 125: 105484, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38838451

RESUMEN

BACKGROUND: The IGF-1 signaling pathway has been deeply involved in the aging mechanism. The insulin-like growth factor binding protein 3 (IGFBP-3) is a protein that binds to IGF-1 that regulates growth, survival, and aging. OBJECTIVE: The purpose of this study was to investigate the impact of the IGFBP3 gene knockout (KO) on the expressions of aging-related proteins and genes using the CRISPR/Cas9 system. METHODS: The IGFBP3 gene knockout (KO) was performed by the CRISPR/Cas9 system. Sanger DNA sequencing and Indel analyses were used to verify the induction of mutation. RESULTS: First, Sanger DNA sequencing was used to analyze the IGFBP3 gene knockout in murine cells (B16F1). The isolation of three colonies with the mutated DNA sequences in the IGFBP3 gene was validated. In addition, the expression levels of the IGFBP3 gene and protein in the edited B16F1 cells were lower than in those of normal B16F1 cells in western blot analysis as well as RT-PCR and qPCR. Moreover, IGFBP3 gene KO cells enhanced the level of SA-ß-gal staining and short telomere length compared to normal B16F1 cells. In particular, it was found that the expression levels of senescence-related proteins such as PI3K, AKT1, PDK1, and p53 were higher in IGFBP3 gene KO cells than in normal cells in both the absence and presence of IGF-1. CONCLUSIONS: Therefore, the above findings could provide a clue that IGFBP3 could play a key role in the aging mechanism.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina , Factor I del Crecimiento Similar a la Insulina , Transducción de Señal , Animales , Ratones , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/fisiología , Técnicas de Inactivación de Genes/métodos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo
15.
CRISPR J ; 7(3): 141-149, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38770737

RESUMEN

CRISPR-Cas technology has transformed our ability to introduce targeted modifications, allowing unconventional animal models such as pigs to model human diseases and improve its value for food production. The main concern with using the technology is the possibility of introducing unwanted modifications in the genome. In this study, we illustrate a pipeline to comprehensively identify off-targeting events on a global scale in the genome of three different gene-edited pig models. Whole genome sequencing paired with an off-targeting prediction software tool filtered off-targeting events amongst natural variations present in gene-edited pigs. This pipeline confirmed two known off-targeting events in IGH knockout pigs, AR and RBFOX1, and identified other presumably off-targeted loci. Independent validation of the off-targeting events using other gene-edited DNA confirmed two novel off-targeting events in RAG2/IL2RG knockout pig models. This unique strategy offers a novel tool to detect off-targeting events in genetically heterogeneous species after genome editing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma , Animales , Porcinos/genética , Edición Génica/métodos , Técnicas de Inactivación de Genes/métodos , Marcación de Gen/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Secuenciación Completa del Genoma/métodos , Animales Modificados Genéticamente
16.
Biochem J ; 481(12): 741-758, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38752978

RESUMEN

Mutations in more than half of human connexin genes encoding gap junction (GJ) subunits have been linked to inherited human diseases. Functional studies of human GJ channels are essential for revealing mechanistic insights into the etiology of disease-linked connexin mutants. However, the commonly used Xenopus oocytes, N2A, HeLa, and other model cells for recombinant expression of human connexins have different and significant limitations. Here we developed a human cell line (HEK293) with each of the endogenous connexins (Cx43 and Cx45) knocked out using the CRISPR-Cas9 system. Double knockout HEK293 cells showed no background GJ coupling, were easily transfected with several human connexin genes (such as those encoding Cx46, Cx50, Cx37, Cx45, Cx26, and Cx36) which successfully formed functional GJs and were readily accessible for dual patch clamp analysis. Single knockout Cx43 or Cx45 HEK cell lines could also be used to characterize human GJ channels formed by Cx45 or Cx43, respectively, with an expression level suitable for studying macroscopic and single channel GJ channel properties. A cardiac arrhythmia linked Cx45 mutant R184G failed to form functional GJs in DKO HEK293 cells with impaired localizations. These genetically engineered HEK293 cells are well suited for patch clamp study of human GJ channels.


Asunto(s)
Conexinas , Uniones Comunicantes , Técnicas de Placa-Clamp , Humanos , Células HEK293 , Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Uniones Comunicantes/genética , Conexina 43/genética , Conexina 43/metabolismo , Sistemas CRISPR-Cas , Ingeniería Genética/métodos , Técnicas de Inactivación de Genes/métodos
17.
Plant J ; 119(2): 1158-1172, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713824

RESUMEN

CRISPR/Cas9 is currently the most powerful tool to generate mutations in plant genomes and more efficient tools are needed as the scale of experiments increases. In the model plant Arabidopsis, the choice of the promoter driving Cas9 expression is critical to generate germline mutations. Several optimal promoters have been reported. However, it is unclear which promoter is ideal as they have not been thoroughly tested side by side. Furthermore, most plant vectors still use one of the two Cas9 nuclear localization sequence (NLS) configurations initially reported. We genotyped more than 6000 Arabidopsis T2 plants to test seven promoters and six types of NLSs across 14 targets to systematically improve the generation of single and multiplex inheritable mutations. We found that the RPS5A promoter and bipartite NLS were individually the most efficient components. When combined, 99% of T2 plants contained at least one knockout (KO) mutation and 84% contained 4- to 7-plex KOs, the highest multiplexing KO rate in Arabidopsis to date. These optimizations will be useful to generate higher-order KOs in the germline of Arabidopsis and will likely be applicable to other CRISPR systems as well.


Asunto(s)
Arabidopsis , Sistemas CRISPR-Cas , Edición Génica , Mutagénesis , Arabidopsis/genética , Edición Génica/métodos , Regiones Promotoras Genéticas/genética , Genoma de Planta/genética , Plantas Modificadas Genéticamente/genética , Mutación , Técnicas de Inactivación de Genes/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética
18.
Fish Physiol Biochem ; 50(4): 1701-1710, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38819758

RESUMEN

Lines with few or no pigment cells have been established in fishes, and these lines are useful for bioimaging. The transparent goldfish (tra) line previously established by N-ethyl-N-nitrosourea (ENU) mutagenesis is also suitable for such experiments. However, in the case of tra, leucophores form in the adult fish, making it difficult to observe the organs inside body from outside the body. In this study, we attempted to create a knockout line of the pax7a and pax7b genes, which are thought to be involved in the formation of leucophores, to further improve the transparency of tra strain.Mutations were introduced by microinjection of the CRISPR/Cas9 mixture into single-cell embryos, mutant individuals were found in F0, and the next generation was generated to confirm the mutation patterns. As a result, multiple mutation patterns, including knockout, were obtained. The same pattern of knockout F1 with pax7a and pax7b mutations was crossed to generate a homozygous knockout in F2.In the resulting pax7b-/- (tra) fish but not in pax7a-/- (tra) fish, the number of leucophores was reduced compared to that in tra, and the transparency of the body was improved. It was suggested that pax7b plays an important role in leucophore formation in goldfish. The established transparent pax7b-/- (tra) goldfish line will be a useful model for bioimaging of the body interior.


Asunto(s)
Técnicas de Inactivación de Genes , Carpa Dorada , Factor de Transcripción PAX7 , Animales , Carpa Dorada/genética , Técnicas de Inactivación de Genes/métodos , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Sistemas CRISPR-Cas , Mutación , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
19.
STAR Protoc ; 5(2): 103089, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38795356

RESUMEN

Generating stable human embryonic stem cells (hESCs) with targeted genetic mutations allows for the interrogation of protein function in numerous cellular contexts while maintaining a relatively high degree of isogenicity. We describe a step-by-step protocol for generating knockout hESC lines with mutations in genes involved in synaptic transmission using CRISPR-Cas9. We describe steps for gRNA design, cloning, stem cell transfection, and clone isolation. We then detail procedures for gene knockout validation and differentiation of stem cells into functional induced neurons.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Células Madre Embrionarias Humanas , Neuronas , Humanos , Sistemas CRISPR-Cas/genética , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Edición Génica/métodos , Diferenciación Celular/genética , Técnicas de Inactivación de Genes/métodos , ARN Guía de Sistemas CRISPR-Cas/genética , Sinapsis/metabolismo , Sinapsis/genética
20.
Biotechnol J ; 19(4): e2300505, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38651269

RESUMEN

Chinese hamster ovary (CHO) cells are the commonly used mammalian host system to manufacture recombinant proteins including monoclonal antibodies. However unfavorable non-human glycoprofile displayed on CHO-produced monoclonal antibodies have negative impacts on product quality, pharmacokinetics, and therapeutic efficiency. Glycoengineering such as genetic elimination of genes involved in glycosylation pathway in CHO cells is a viable solution but constrained due to longer timeline and laborious workflow. Here, in this proof-of-concept (PoC) study, we present a novel approach coined CellEDIT to engineer CHO cells by intranuclear delivery of the CRISPR components to single cells using the FluidFM technology. Co-injection of CRISPR system targeting BAX, DHFR, and FUT8 directly into the nucleus of single cells, enabled us to generate triple knockout CHO-K1 cell lines within a short time frame. The proposed technique assures the origin of monoclonality without the requirement of limiting dilution, cell sorting or positive selection. Furthermore, the approach is compatible to develop both single and multiple knockout clones (FUT8, BAX, and DHFR) in CHO cells. Further analyses on single and multiple knockout clones confirmed the targeted genetic disruption and altered protein expression. The knockout CHO-K1 clones showed the persistence of gene editing during the subsequent passages, compatible with serum free chemically defined media and showed equivalent transgene expression like parental clone.


Asunto(s)
Sistemas CRISPR-Cas , Cricetulus , Edición Génica , Células CHO , Animales , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Anticuerpos Monoclonales/genética , Proteínas Recombinantes/genética , Técnicas de Inactivación de Genes/métodos , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Cricetinae , Ingeniería Genética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...