Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.078
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1396965, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38982992

RESUMEN

Adipose tissues, particularly beige and brown adipose tissue, play crucial roles in energy metabolism. Brown adipose tissues' thermogenic capacity and the appearance of beige cells within white adipose tissue have spurred interest in their metabolic impact and therapeutic potential. Brown and beige fat cells, activated by environmental factors like cold exposure or by pharmacology, share metabolic mechanisms that drive non-shivering thermogenesis. Understanding these two cell types requires advanced, yet broadly applicable in vitro models that reflect the complex microenvironment and vasculature of adipose tissues. Here we present mouse vascularized adipose spheroids of the stromal vascular microenvironment from inguinal white adipose tissue, a tissue with 'beiging' capacity in mice and humans. We show that adding a scaffold improves vascular sprouting, enhances spheroid growth, and upregulates adipogenic markers, thus reflecting increased adipocyte maturity. Transcriptional profiling via RNA sequencing revealed distinct metabolic pathways upregulated in our vascularized adipose spheroids, with increased expression of genes involved in glucose metabolism, lipid metabolism, and thermogenesis. Functional assessment demonstrated increased oxygen consumption in vascularized adipose spheroids compared to classical 2D cultures, which was enhanced by ß-adrenergic receptor stimulation correlating with elevated ß-adrenergic receptor expression. Moreover, stimulation with the naturally occurring adipokine, FGF21, induced Ucp1 mRNA expression in the vascularized adipose spheroids. In conclusion, vascularized inguinal white adipose tissue spheroids provide a physiologically relevant platform to study how the stromal vascular microenvironment shapes adipocyte responses and influence activated thermogenesis in beige adipocytes.


Asunto(s)
Esferoides Celulares , Termogénesis , Animales , Ratones , Esferoides Celulares/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/citología , Ratones Endogámicos C57BL , Masculino , Adipocitos/metabolismo , Adipocitos/citología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/citología , Células Cultivadas , Adipocitos Beige/metabolismo , Adipocitos Beige/citología , Metabolismo Energético , Adipogénesis/fisiología , Sistemas Microfisiológicos
2.
Commun Biol ; 7(1): 793, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951146

RESUMEN

Brown and brown-like adipose tissues have attracted significant attention for their role in metabolism and therapeutic potential in diabetes and obesity. Despite compelling evidence of an interplay between adipocytes and lymphocytes, the involvement of these tissues in immune responses remains largely unexplored. This study explicates a newfound connection between neuroinflammation and brown- and bone marrow adipose tissue. Leveraging the use of [18F]F-AraG, a mitochondrial metabolic tracer capable of tracking activated lymphocytes and adipocytes simultaneously, we demonstrate, in models of glioblastoma and multiple sclerosis, the correlation between intracerebral immune infiltration and changes in brown- and bone marrow adipose tissue. Significantly, we show initial evidence that a neuroinflammation-adipose tissue link may also exist in humans. This study proposes the concept of an intricate immuno-neuro-adipose circuit, and highlights brown- and bone marrow adipose tissue as an intermediary in the communication between the immune and nervous systems. Understanding the interconnectedness within this circuitry may lead to advancements in the treatment and management of various conditions, including cancer, neurodegenerative diseases and metabolic disorders.


Asunto(s)
Tejido Adiposo Pardo , Enfermedades Neuroinflamatorias , Animales , Humanos , Tejido Adiposo Pardo/metabolismo , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Médula Ósea/metabolismo , Ratones , Masculino , Glioblastoma/patología , Glioblastoma/inmunología , Glioblastoma/metabolismo , Ratones Endogámicos C57BL , Femenino , Esclerosis Múltiple/patología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/diagnóstico por imagen , Tomografía de Emisión de Positrones
3.
Biol Sex Differ ; 15(1): 53, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987854

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with increased obesity, hyperandrogenism, and altered brown adipose tissue (BAT) thermogenesis. MicroRNAs play critical functions in brown adipocyte differentiation and maintenance. We aim to study the role of microRNA-21 (miR-21) in altered energy homeostasis and BAT thermogenesis in a PCOS mouse model of peripubertal androgen exposure. METHODS: Three-week-old miR-21 knockout (miR21KO) or wild-type (WT) female mice were treated with dihydrotestosterone (DHT) or vehicle for 90 days. Body composition was determined by EchoMRI. Energy expenditure (EE), oxygen consumption (VO2), carbon dioxide production (VCO2), and respiratory exchange ratio (RER) were measured by indirect calorimetry. Androgen receptor (AR), and markers of adipogenesis, de novo lipogenesis, angiogenesis, extracellular matrix remodeling, and thermogenesis were quantified by RT-qPCR and/or Western-blot. RESULTS: MiR-21 ablation attenuated DHT-mediated increase in body weight while having no effect on fat or BAT mass. MiR-21 ablation attenuated DHT-mediated BAT AR upregulation. MiR-21 ablation did not alter EE; however, miR21KO DHT-treated mice have reduced VO2, VCO2, and RER. MiR-21 ablation reversed DHT-mediated decrease in food intake and increase in sleep time. MiR-21 ablation decreased some adipogenesis (Adipoq, Pparγ, and Cebpß) and extracellular matrix remodeling (Mmp-9 and Timp-1) markers expression in DHT-treated mice. MiR-21 ablation abolished DHT-mediated increases in thermogenesis markers Cpt1a and Cpt1b, while decreasing CIDE-A expression. CONCLUSIONS: Our findings suggest that BAT miR-21 may play a role in regulating DHT-mediated thermogenic dysfunction in PCOS. Modulation of BAT miR-21 levels could be a novel therapeutic approach for the treatment of PCOS-associated metabolic derangements.


Polycystic ovary syndrome (PCOS) is a common hormone disorder in premenopausal women, often linked to obesity and abnormal brown fat tissue activity. Women with PCOS have elevated male hormones, which are responsible for many metabolic problems. Our study focuses on understanding the role of microRNA-21 (miR-21) in the energy balance and brown fat tissue activity in a PCOS mouse model. We studied female mice with and without miR-21, treating them with a male hormone. We measured body composition and energy expenditure. We also analyzed the levels of specific genes and proteins related to fat tissue and energy production. Our findings showed that mice lacking miR-21 had less weight gain in response to male hormones, without fat or brown fat tissue mass changes. They also had reduced energy production, changed eating habits, and altered expression of genes related to fat tissue and energy production. In conclusion, our study suggests that miR-21 in brown fat tissue may regulate the energy imbalance caused by male hormones in PCOS. Adjusting miR-21 levels in brown fat tissue could be a new way to address the metabolic issues associated with PCOS.


Asunto(s)
Adipogénesis , Tejido Adiposo Pardo , Modelos Animales de Enfermedad , Ratones Noqueados , MicroARNs , Síndrome del Ovario Poliquístico , Termogénesis , Animales , Síndrome del Ovario Poliquístico/metabolismo , Femenino , MicroARNs/metabolismo , MicroARNs/genética , Tejido Adiposo Pardo/metabolismo , Dihidrotestosterona/farmacología , Ratones , Ratones Endogámicos C57BL , Receptores Androgénicos/metabolismo
4.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000187

RESUMEN

The ketogenic diet (KD) is characterized by minimal carbohydrate, moderate protein, and high fat intake, leading to ketosis. It is recognized for its efficiency in weight loss, metabolic health improvement, and various therapeutic interventions. The KD enhances glucose and lipid metabolism, reducing triglycerides and total cholesterol while increasing high-density lipoprotein levels and alleviating dyslipidemia. It significantly influences adipose tissue hormones, key contributors to systemic metabolism. Brown adipose tissue, essential for thermogenesis and lipid combustion, encounters modified UCP1 levels due to dietary factors, including the KD. UCP1 generates heat by uncoupling electron transport during ATP synthesis. Browning of the white adipose tissue elevates UCP1 levels in both white and brown adipose tissues, a phenomenon encouraged by the KD. Ketone oxidation depletes intermediates in the Krebs cycle, requiring anaplerotic substances, including glucose, glycogen, or amino acids, for metabolic efficiency. Methylation is essential in adipogenesis and the body's dietary responses, with DNA methylation of several genes linked to weight loss and ketosis. The KD stimulates FGF21, influencing metabolic stability via the UCP1 pathways. The KD induces a reduction in muscle mass, potentially involving anti-lipolytic effects and attenuating proteolysis in skeletal muscles. Additionally, the KD contributes to neuroprotection, possesses anti-inflammatory properties, and alters epigenetics. This review encapsulates the metabolic effects and signaling induced by the KD in adipose tissue and major metabolic organs.


Asunto(s)
Dieta Cetogénica , Humanos , Animales , Tejido Adiposo/metabolismo , Metabolismo de los Lípidos , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Metabolismo Energético , Tejido Adiposo Pardo/metabolismo , Termogénesis
5.
Physiol Rep ; 12(11): e16055, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38872474

RESUMEN

This study examined the effects of exercise and detraining at a young age on fat accumulation in various organs. Four-week-old male Otsuka Long-Evans Tokushima Fatty (OLETF) rats were assigned to either the non-exercise sedentary (OLETF Sed) or exercise groups. The exercise group was subdivided into two groups: exercise between 4 and 12 weeks of age (OLETF Ex) and exercise between 4 and 6 weeks of age followed by non-exercise between 6 and 12 weeks of age (OLETF DT). Body weight was significantly lower in the OLETF Ex group than in the OLETF Sed group at 12 weeks of age. Fat accumulation in the epididymal white adipose tissue, liver, and brown adipose tissue was suppressed in the OLETF Ex group. During the exercise period, body weight and food intake in the OLETF DT group were significantly lower than those in the OLETF Sed group. However, food intake was significantly higher in the OLETF DT group than in the OLETF Sed group after exercise cessation, resulting in extreme obesity with fatty liver and brown adipose tissue whitening. Detraining after early-onset exercise promotes hyperphagia, causing extreme obesity. Overeating should be avoided during detraining periods in cases of exercise cessation at a young age.


Asunto(s)
Tejido Adiposo Pardo , Hígado Graso , Hiperfagia , Obesidad , Condicionamiento Físico Animal , Ratas Endogámicas OLETF , Animales , Masculino , Tejido Adiposo Pardo/metabolismo , Hiperfagia/fisiopatología , Hiperfagia/metabolismo , Ratas , Hígado Graso/metabolismo , Hígado Graso/etiología , Obesidad/metabolismo , Obesidad/fisiopatología , Obesidad/etiología , Ingestión de Alimentos , Hígado/metabolismo , Peso Corporal
6.
Ann Endocrinol (Paris) ; 85(3): 184-189, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38871497

RESUMEN

Brown adipose tissue (BAT) and beige adipose tissues are important contributors to cold-induced whole body thermogenesis in rodents. The documentation in humans of cold- and ß-adrenergic receptor agonist-stimulated BAT glucose uptake using positron emission tomography (PET) and of a decrease of this response in individuals with cardiometabolic disorders led to the suggestion that BAT/beige adipose tissues could be relevant targets for prevention and treatment of these conditions. In this brief review, we will critically assess this question by first describing the basic rationale for this affirmation, second by examining the evidence in human studies, and third by discussing the possible means to activate the thermogenic response of these tissues in humans.


Asunto(s)
Tejido Adiposo Beige , Tejido Adiposo Pardo , Termogénesis , Humanos , Tejido Adiposo Pardo/fisiología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Termogénesis/fisiología , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Beige/fisiología , Animales , Tomografía de Emisión de Positrones , Agonistas Adrenérgicos beta/farmacología , Obesidad/metabolismo , Obesidad/terapia , Frío
8.
STAR Protoc ; 5(2): 103042, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38850537

RESUMEN

The mitochondrial stress test is a gold-standard approach for assessing adipose tissue physiological functions and pathological changes. Here, we present a protocol for conducting Seahorse assays using ex vivo mouse brown and white adipose depots. We describe steps for rehydrating the cartridge, preparing freshly harvested fat depots, placing them onto an islet capture plate, and incubating them in a non-CO2 incubator. We then detail procedures for adding mitochondrial stressor solutions and conducting the mitochondrial stress test using the Seahorse XFe24 Analyzer. For complete details on the use and execution of this protocol, please refer to An et al.1.


Asunto(s)
Tejido Adiposo Pardo , Tejido Adiposo Blanco , Mitocondrias , Animales , Ratones , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Pardo/metabolismo , Mitocondrias/metabolismo
9.
Endocrinology ; 165(7)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38836615

RESUMEN

About half of the world population carries at least one allele of the Ala92-DIO2, which slows down the activity of the type 2 deiodinase (D2), the enzyme that activates T4 to T3. Carrying the Ala92-DIO2 allele has been associated with increased body mass index and insulin resistance, but this has not been reproduced in all populations. To test if the genetic background affects the impact of this polymorphism, here we studied the genetically distant C57Bl/6J (B6) and FVB/N (FVB) mice carrying the Ala92-Dio2 allele as compared to control mice carrying the Thr92-Dio2 allele. Whereas B6-Ala92-Dio2 and B6-Thr92-Dio2 mice-fed chow or high-fat diet-behaved metabolically similar in studies using indirect calorimetry, glucose- and insulin tolerance tests, and measuring white adipose tissue (WAT) weight and liver steatosis, major differences were observed between FVB-Ala92-Dio2 and FVB-Thr92-Dio2 mice: carrying the Ala92-Dio2 allele (on a chow diet) resulted in hypercholesterolemia, smaller WAT pads, hepatomegaly, steatosis, and transcriptome changes in the interscapular brown adipose tissue (iBAT) typical of ER stress and apoptosis. Acclimatization at thermoneutrality (30 °C) eliminated most of the metabolic phenotype, indicating that impaired adaptive (BAT) thermogenesis can be involved. In conclusion, the metabolic impact of carrying the Ala92-Dio2 allele depends greatly on the genetic background of the mouse, varying from no phenotype in B6 mice to a major phenotype in FVB mice. These results will help the planning of future clinical trials studying the Thr92Ala-DIO2 polymorphism and may explain why some clinical studies performed in different populations across the globe have obtained inconsistent results.


Asunto(s)
Yoduro Peroxidasa , Yodotironina Deyodinasa Tipo II , Ratones Endogámicos C57BL , Animales , Masculino , Yoduro Peroxidasa/genética , Ratones , Dieta Alta en Grasa , Antecedentes Genéticos , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Pardo/metabolismo , Polimorfismo Genético , Resistencia a la Insulina/genética , Hígado Graso/genética
10.
Front Biosci (Landmark Ed) ; 29(6): 208, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38940030

RESUMEN

Polycystic ovary syndrome (PCOS) is a prevalent reproductive, endocrine, and metabolic disease that affects 5-18% of women worldwide, with a rising incidence. Hyperandrogenemia and insulin resistance are two key pathophysiological factors that contribute to PCOS, both of which contribute to a variety of health issues such as menstrual irregularities, obesity, dysfunctional glucose and lipid homeostasis, infertility, mental disorders, and cardiovascular and cerebrovascular diseases. Despite ongoing studies, the origin and pathogenesis of PCOS remain elusive; there is also a clinical need for simpler, more effective, longer lasting, and more comprehensive treatments for women with PCOS. The gut-fat axis, a critical regulatory route for metabolism, endocrine function, and immune response, has received considerable interest in recent years in the research of the etiology and treatment of metabolic illnesses such as type 2 diabetes mellitus and non-alcoholic fatty liver disease. The latest research in PCOS has revealed significant alterations in the homogeneity and phylogenetic diversity of the gut microbiota. Animal research using fecal microbiota transplantation has confirmed the importance of gut microbiota in regulating insulin sensitivity and sex hormone balance in PCOS. Furthermore, studies have shown a decrease in the volume and/or activity of brown adipose tissue (BAT) in PCOS patients, a change that alters adipokine release, leading to insulin resistance and hyperandrogenemia, aggravating PCOS progression. Given the function of BAT in increasing energy expenditure and alleviating metabolic parameters, efforts to activate BAT or induce browning of white adipose tissue have emerged as possible treatments for PCOS. Recent research has suggested that the gut microbiota can influence BAT creation and activity via metabolites such as short-chain fatty acids and bile acids, as well as the gut-brain axis. Cold exposure, healthy dieting, metformin, bariatric surgery, glucagon-like peptide 1 receptor agonists and melatonin have all been shown in basic and clinical studies to modulate BAT activity by influencing the gut microbiota, demonstrating significant clinical potential. However, more studies into the regulation mechanisms of the gut-BAT axis are required to produce more effective, comfortable, and safe tailored therapeutics for PCOS.


Asunto(s)
Tejido Adiposo Pardo , Microbioma Gastrointestinal , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/microbiología , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/terapia , Síndrome del Ovario Poliquístico/fisiopatología , Humanos , Femenino , Microbioma Gastrointestinal/fisiología , Tejido Adiposo Pardo/metabolismo , Animales , Resistencia a la Insulina , Trasplante de Microbiota Fecal , Obesidad/microbiología , Obesidad/metabolismo , Obesidad/terapia
11.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928011

RESUMEN

Adipose tissue is conventionally recognized as a metabolic organ responsible for storing energy. However, a proportion of adipose tissue also functions as a thermogenic organ, contributing to the inhibition of weight gain and prevention of metabolic diseases. In recent years, there has been significant progress in the study of thermogenic fats, particularly brown adipose tissue (BAT). Despite this progress, the mechanism underlying thermogenesis in beige adipose tissue remains highly controversial. It is widely acknowledged that beige adipose tissue has three additional thermogenic mechanisms in addition to the conventional UCP1-dependent thermogenesis: Ca2+ cycling thermogenesis, creatine substrate cycling thermogenesis, and triacylglycerol/fatty acid cycling thermogenesis. This paper delves into these three mechanisms and reviews the latest advancements in the molecular regulation of thermogenesis from the molecular genetic perspective. The objective of this review is to provide readers with a foundation of knowledge regarding the beige fats and a foundation for future research into the mechanisms of this process, which may lead to the development of new strategies for maintaining human health.


Asunto(s)
Adipocitos Beige , Termogénesis , Termogénesis/genética , Humanos , Adipocitos Beige/metabolismo , Animales , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético , Calcio/metabolismo , Ácidos Grasos/metabolismo , Triglicéridos/metabolismo , Tejido Adiposo Beige/metabolismo
12.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38843936

RESUMEN

Lipid composition is conserved within sub-cellular compartments to maintain cell function. Lipidomic analyses of liver, muscle, white and brown adipose tissue (BAT) mitochondria revealed substantial differences in their glycerophospholipid (GPL) and free cholesterol (FC) contents. The GPL to FC ratio was 50-fold higher in brown than white adipose tissue mitochondria. Their purity was verified by comparison of proteomes with ER and mitochondria-associated membranes. A lipid signature containing PC and FC, calculated from the lipidomic profiles, allowed differentiation of mitochondria from BAT of mice housed at different temperatures. Elevating FC in BAT mitochondria prevented uncoupling protein (UCP) 1 function, whereas increasing GPL boosted it. Similarly, STARD3 overexpression facilitating mitochondrial FC import inhibited UCP1 function in primary brown adipocytes, whereas a knockdown promoted it. We conclude that the mitochondrial GPL/FC ratio is key for BAT function and propose that targeting it might be a promising strategy to promote UCP1 activity.


Asunto(s)
Tejido Adiposo Pardo , Colesterol , Lipidómica , Mitocondrias , Proteína Desacopladora 1 , Animales , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Ratones , Tejido Adiposo Pardo/metabolismo , Colesterol/metabolismo , Mitocondrias/metabolismo , Lipidómica/métodos , Especificidad de Órganos , Ratones Endogámicos C57BL , Tejido Adiposo Blanco/metabolismo , Glicerofosfolípidos/metabolismo , Masculino , Metabolismo de los Lípidos
13.
Science ; 384(6700): 1111-1117, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38843333

RESUMEN

Brown adipose tissue (BAT) is a heater organ that expresses thermogenic uncoupling protein 1 (UCP1) to maintain high body temperatures during cold stress. BAT thermogenesis is considered an overarching mammalian trait, but its evolutionary origin is unknown. We show that adipose tissue of marsupials, which diverged from eutherian mammals ~150 million years ago, expresses a nonthermogenic UCP1 variant governed by a partial transcriptomic BAT signature similar to that found in eutherian beige adipose tissue. We found that the reconstructed UCP1 sequence of the common eutherian ancestor displayed typical thermogenic activity, whereas therian ancestor UCP1 is nonthermogenic. Thus, mammalian adipose tissue thermogenesis may have evolved in two distinct stages, with a prethermogenic stage in the common therian ancestor linking UCP1 expression to adipose tissue and thermal stress. We propose that in a second stage, UCP1 acquired its thermogenic function specifically in eutherians, such that the onset of mammalian BAT thermogenesis occurred only after the divergence from marsupials.


Asunto(s)
Tejido Adiposo Pardo , Evolución Biológica , Marsupiales , Termogénesis , Proteína Desacopladora 1 , Animales , Humanos , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Euterios/genética , Euterios/fisiología , Evolución Molecular , Marsupiales/genética , Marsupiales/fisiología , Filogenia , Termogénesis/genética , Transcriptoma , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
14.
Science ; 384(6700): 1065-1066, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38843350

RESUMEN

Comparative genomics elucidates the steps enabling heat production in fat tissue.


Asunto(s)
Tejido Adiposo Pardo , Evolución Biológica , Mamíferos , Termogénesis , Animales , Mamíferos/genética , Mamíferos/fisiología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/fisiología , Humanos , Genómica
15.
J Endocrinol ; 262(2)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38842921

RESUMEN

Characteristic symptoms of hyperthyroidism include weight loss, heart palpitation, and sweating. Thyroid hormones (TH) can stimulate thermogenesis through central and peripheral mechanisms. Previous studies have shown an association between dysfunction of cardiotrophin-like cytokine factor 1 (CLCF1) and cold-induced sweating syndrome, with recent research also indicating a link between CLCF1 and brown adipose tissue thermogenesis. However, it remains unclear whether CLCF1 and TH have synergistic or antagonistic effects on thermogenesis. This study aims to investigate the influence of thyroid hormone on circulating CLCF1 levels in humans and explore the potential possibilities of thyroid hormone in regulating energy metabolism by modulating Clcf1 in mice. By recruiting hyperthyroid patients and healthy subjects, we observed significantly lower serum CLCF1 levels in hyperthyroid patients compared to healthy subjects, with serum CLCF1 levels independently associated with hyperthyroidism after adjusting for potential confounders. Tissue analysis from mice treated with T3 revealed a decrease in CLCF1 expression in BAT and iWAT of C57BL/6 mice. These findings suggest that TH may play a role in regulating CLCF1 expression in adipose tissue.


Asunto(s)
Hipertiroidismo , Ratones Endogámicos C57BL , Triyodotironina , Hipertiroidismo/sangre , Animales , Masculino , Triyodotironina/sangre , Humanos , Ratones , Adulto , Femenino , Persona de Mediana Edad , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Citocinas/sangre , Citocinas/metabolismo , Termogénesis/efectos de los fármacos , Estudios de Casos y Controles
16.
Lifestyle Genom ; 17(1): 72-81, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38889698

RESUMEN

INTRODUCTION: Obesity, characterized by excess adipose tissue, is a major public health problem worldwide. Brown adipose tissue (BAT) and beige adipose tissue participate in thermogenesis through uncoupling protein 1 (UCP1). Polyphenols including those from Calafate (a native polyphenol-rich Patagonian berry), are considered as potential anti-obesity compounds due to their pro-thermogenic characteristics. However, polyphenols are mainly metabolized by the gut microbiota (GM) that may influence their bioactivity and bioavailability. The aim of this study was to determine the impact of dietary administration with a Calafate polyphenol-rich extract on thermogenic activity of BAT and beige adipose tissue and GM composition. METHODS: Eight-week-old C57BL6 mice (n = 30) were divided into 4 groups to receive for 24 weeks a control diet (C), a high-fat diet alone (HF), or high-fat diet supplemented with Calafate extract (HFC) or the same high-fat diet supplemented with Calafate extract but treated with antibiotics (HFCAB) from week 19-20. Administration with Calafate extract (50 mg/kg per day) was carried out for 3 weeks from week 21-23 in the HFC and HFCAB groups. After euthanasia, gene expression of thermogenic markers was analyzed in BAT and inguinal white adipose tissue (iWAT). Transmission electron microscopy was performed to assess mitochondrial morphology and cristae density in BAT. GM diversity and composition were characterized by deep sequencing with the MiSeq Illumina platform. RESULTS: Calafate extract administration had no effect on weight gain in mice fed a high-fat diet. However, it prevented alterations in mitochondrial cristae induced by HFD and increased Dio2 expression in BAT and iWAT. The intervention also influenced the GM composition, preventing changes in specific bacterial taxa induced by the high-fat diet. However, the antibiotic treatment prevented in part these effects, suggesting the implications of GM. CONCLUSION: These results suggest that the acute administration of a Calafate extract modulates the expression of thermogenic markers, prevents alterations in mitochondrial cristae and intestinal microbiota in preclinical models. The study highlights the complex interaction between polyphenols, thermogenesis, and the GM, providing valuable insights into their potential roles in the treatment of obesity-related metabolic diseases.


Asunto(s)
Tejido Adiposo Pardo , Dieta Alta en Grasa , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Extractos Vegetales , Termogénesis , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Termogénesis/efectos de los fármacos , Ratones , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Extractos Vegetales/farmacología , Masculino , Obesidad/metabolismo , Proteína Desacopladora 1/metabolismo , Tejido Adiposo Beige/efectos de los fármacos , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Biomarcadores
17.
Physiol Behav ; 283: 114601, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38838800

RESUMEN

AIM: The hypothesis of this study is to determine the effects of intracerebroventricular (icv) prokineticin 2 infusion on food consumption and body weight and to elucidate whether it has effects on energy expenditure via the hypothalamus-pituitary-thyroid (HPT) axis in adipose tissue. MATERIAL AND METHODS: A total of 40 rats were used in the study and 4 groups were established: Control, Sham, Prokineticin 1.5 and Prokineticin 4.5 (n=10). Except for the Control group, rats were treated intracerebroventricularly via osmotic minipumps, the Sham group was infused with aCSF (vehicle), and the Prokineticin 1.5 and Prokineticin 4.5 groups were infused with 1.5 nMol and 4.5 nMol prokineticin 2, respectively. Food and water consumption and body weight were monitored during 7-day infusion in all groups. At the end of the infusion, the rats were decapitated and serum TSH, fT4 and fT3 levels were determined by ELISA. In addition, PGC-1α and UCP1 gene expression levels in white adipose tissue (WAT) and brown adipose tissue (BAT), TRH from rat hypothalamic tissue were determined by real-time PCR. RESULTS: Icv prokineticin 2 (4.5 nMol) infusion had no effect on water consumption but reduced daily food consumption and body weight (p<0.05). Icv prokineticin 2 (4.5 nMol) infusion significantly increased serum TSH, fT4 and fT3 levels when compared to Control and Sham groups (p<0.05). Also, icv prokineticin 2 (4.5 nMol) infusion increased the expression of TRH in the hypothalamus tissue and expression of PGC-1α UCP1 in the WAT and BAT (p<0.05). CONCLUSION: Icv prokineticin 2 (4.5 nMol) infusion may suppress food consumption via its receptors in the hypothalamus and reduce body weight by stimulating energy expenditure and thermogenesis in adipose tissue through the HPT axis.


Asunto(s)
Peso Corporal , Ingestión de Alimentos , Metabolismo Energético , Hormonas Gastrointestinales , Infusiones Intraventriculares , Glándula Tiroides , Animales , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Masculino , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo , Ratas , Hormonas Gastrointestinales/metabolismo , Hormonas Gastrointestinales/administración & dosificación , Proteína Desacopladora 1/metabolismo , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/administración & dosificación , Tirotropina/sangre , Tirotropina/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tiroxina/sangre , Tiroxina/administración & dosificación , Ingestión de Líquidos/efectos de los fármacos , Triyodotironina/administración & dosificación , Triyodotironina/sangre , Triyodotironina/farmacología , Ratas Wistar , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos
18.
Life Sci ; 351: 122843, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38880168

RESUMEN

AIMS: Carbohydrate-responsive element-binding protein (ChREBP) is a transcription factor that regulates several metabolic genes, including the lipogenic enzymes necessary for the metabolic conversion of carbohydrates into lipids. Although the crucial role of ChREBP in the liver, the primary site of de novo lipogenesis, has been studied, its functional role in adipose tissues, particularly brown adipose tissue (BAT), remains unclear. In this study, we investigated the role of ChREBP in BAT under conditions of a high-carbohydrate diet (HCD) and ketogenic diet (KD), represented by extremely low carbohydrate intake. MAIN METHODS: Using an adeno-associated virus and Cas9 knock-in mice, we rapidly generated Chrebp brown adipocyte-specific knock-out (B-KO) mice, bypassing the necessity for prolonged breeding by using the Cre-Lox system. KEY FINDINGS: We demonstrated that ChREBP is essential for glucose metabolism and lipogenic gene expression in BAT under HCD conditions in Chrebp B-KO mice. After nutrient intake, Chrebp B-KO attenuated the KD-induced expression of several inflammatory genes in BAT. SIGNIFICANCE: Our results indicated that ChREBP, a nutrient-sensing regulator, is indispensable for expressing a diverse range of metabolic genes in BAT.


Asunto(s)
Tejido Adiposo Pardo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Regulación de la Expresión Génica , Lipogénesis , Ratones Noqueados , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Tejido Adiposo Pardo/metabolismo , Ratones , Lipogénesis/genética , Masculino , Glucosa/metabolismo , Ratones Endogámicos C57BL , Dieta Cetogénica , Nutrientes/metabolismo
19.
Eur J Endocrinol ; 191(1): 106-115, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917410

RESUMEN

OBJECTIVE: Brown adipose tissue (BAT) is a therapeutic target for obesity. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) is commonly used to quantify human BAT mass and activity. Detectable 18F-FDG uptake by BAT is associated with reduced prevalence of cardiometabolic disease. However, 18F-FDG uptake may not always be a reliable marker of BAT thermogenesis, for example, insulin resistance may reduce glucose uptake. Uncoupling protein 1 (UCP1) is the key thermogenic protein in BAT. Therefore, we hypothesised that UCP1 expression may be altered in individuals with cardiometabolic risk factors. METHODS: We quantified UCP1 expression as an alternative marker of thermogenic capacity in BAT and white adipose tissue (WAT) samples (n = 53) and in differentiated brown and white pre-adipocytes (n = 85). RESULTS: UCP1 expression in BAT, but not in WAT or brown/white differentiated pre-adipocytes, was reduced with increasing age, obesity, and adverse cardiometabolic risk factors such as fasting glucose, insulin, and blood pressure. However, UCP1 expression in BAT was preserved in obese subjects of <40 years of age. To determine if BAT activity was also preserved in vivo, we undertook a case-control study, performing 18F-FDG scanning during mild cold exposure in young (mean age ∼22 years) normal weight and obese volunteers. 18F-FDG uptake by BAT and BAT volume were similar between groups, despite increased insulin resistance. CONCLUSION: 18F-FDG uptake by BAT and UCP1 expression are preserved in young obese adults. Older subjects retain precursor cells with the capacity to form new thermogenic adipocytes. These data highlight the therapeutic potential of BAT mass expansion and activation in obesity.


Asunto(s)
Tejido Adiposo Pardo , Factores de Riesgo Cardiometabólico , Fluorodesoxiglucosa F18 , Obesidad , Proteína Desacopladora 1 , Humanos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/diagnóstico por imagen , Proteína Desacopladora 1/metabolismo , Adulto , Masculino , Femenino , Persona de Mediana Edad , Adulto Joven , Obesidad/metabolismo , Termogénesis/fisiología , Adolescente , Tomografía de Emisión de Positrones , Estudios de Casos y Controles , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/diagnóstico por imagen , Anciano
20.
Front Biosci (Landmark Ed) ; 29(6): 236, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38940054

RESUMEN

BACKGROUND: This study aimed to elucidate the molecular mechanism through which C1q/tumor necrosis factor (TNF)-related protein 9 (CTRP9) acts in the formation and differentiation of brown adipose tissue (BAT). METHODS: Adenovirus particles encoding CTRP9 and green fluorescent protein were inoculated into the scapula of C57BL/6J mice and fed a high-fat diet for 8 weeks; the body weight, lipid droplet morphology, glucose tolerance, insulin tolerance, and protein expression levels were analyzed. In addition, CTRP9 adenovirus was transfected into brown preadipocytes, and differentiation was induced to identify the effect of CTRP9 overexpression on adipocyte differentiation. RESULTS: CTRP9 overexpression significantly increased the weight gain of mice. Additionally, the CTRP9 overexpression group exhibited significantly increased adipose tissue weight and glucose clearance rates and decreased insulin sensitivity and serum triglyceride levels compared to the control group. Furthermore, CTRP9 overexpression significantly upregulated the adipose triglyceride lipase (ATGL) and perilipin 1 protein expression levels in BAT. The cell experiment results confirmed that CTRP9 overexpression significantly inhibited the adipogenesis of brown adipocytes as evidenced by the downregulation of uncoupling protein 1, beta-3 adrenergic receptor, ATGL, and hormone-sensitive lipase mRNA levels and the significant suppression of uncoupling protein 1, ATGL, and perilipin 1 protein levels in brown adipocytes. CONCLUSIONS: The finding of this study demonstrated that CTRP9 promotes lipolysis by upregulating ATGL expression in vivo and inhibits the differentiation of brown preadipocytes in vitro.


Asunto(s)
Adiponectina , Tejido Adiposo Pardo , Dieta Alta en Grasa , Glicoproteínas , Lipólisis , Animales , Masculino , Ratones , Aciltransferasas , Adipogénesis , Adiponectina/metabolismo , Adiponectina/genética , Tejido Adiposo Pardo/metabolismo , Diferenciación Celular , Dieta Alta en Grasa/efectos adversos , Glicoproteínas/metabolismo , Resistencia a la Insulina , Lipasa/metabolismo , Lipasa/genética , Ratones Endogámicos C57BL , Perilipina-1/metabolismo , Perilipina-1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...