Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.793
Filtrar
1.
Cells ; 13(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38994992

RESUMEN

Previous studies reported that a mild, non-protein-denaturing, fever-like temperature increase induced the unfolded protein response (UPR) in mammalian cells. Our dSTORM super-resolution microscopy experiments revealed that the master regulator of the UPR, the IRE1 (inositol-requiring enzyme 1) protein, is clustered as a result of UPR activation in a human osteosarcoma cell line (U2OS) upon mild heat stress. Using ER thermo yellow, a temperature-sensitive fluorescent probe targeted to the endoplasmic reticulum (ER), we detected significant intracellular thermogenesis in mouse embryonic fibroblast (MEF) cells. Temperatures reached at least 8 °C higher than the external environment (40 °C), resulting in exceptionally high ER temperatures similar to those previously described for mitochondria. Mild heat-induced thermogenesis in the ER of MEF cells was likely due to the uncoupling of the Ca2+/ATPase (SERCA) pump. The high ER temperatures initiated a pronounced cytosolic heat-shock response in MEF cells, which was significantly lower in U2OS cells in which both the ER thermogenesis and SERCA pump uncoupling were absent. Our results suggest that depending on intrinsic cellular properties, mild hyperthermia-induced intracellular thermogenesis defines the cellular response mechanism and determines the outcome of hyperthermic stress.


Asunto(s)
Retículo Endoplásmico , Respuesta al Choque Térmico , Termogénesis , Humanos , Animales , Retículo Endoplásmico/metabolismo , Ratones , Respuesta de Proteína Desplegada , Línea Celular Tumoral , Estrés del Retículo Endoplásmico , Hipertermia/metabolismo , Hipertermia/patología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Fibroblastos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
2.
J Exp Biol ; 227(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39045710

RESUMEN

Aerobic metabolism underlies vital traits such as locomotion and thermogenesis, and aerobic capacity influences fitness in many animals. The heart is a key determinant of aerobic capacity, but the relative influence of cardiac output versus other steps in the O2 transport pathway remains contentious. In this Commentary, we consider this issue by examining the mechanistic basis for adaptive increases in aerobic capacity (thermogenic V̇O2,max; also called summit metabolism) in deer mice (Peromyscus maniculatus) native to high altitude. Thermogenic V̇O2,max is increased by acclimation to cold hypoxia (simulating high-altitude conditions), and high-altitude populations generally have greater V̇O2,max than their low-altitude counterparts. This plastic and evolved variation in V̇O2,max is associated with corresponding variation in maximal cardiac output, along with variation in other traits across the O2 pathway (e.g. arterial O2 saturation, blood haemoglobin content and O2 affinity, tissue O2 extraction, tissue oxidative capacity). By applying fundamental principles of gas exchange, we show that the relative influence of cardiac output on V̇O2,max depends on the O2 diffusing capacity of thermogenic tissues (skeletal muscles and brown adipose tissues). Functional interactions between cardiac output and blood haemoglobin content determine circulatory O2 delivery and thus affect V̇O2,max, particularly in high-altitude environments where erythropoiesis can increase haematocrit and blood viscosity. There may also be functional linkages between cardiac output and tissue O2 diffusion due to the role of blood flow in determining capillary haematocrit and red blood cell flux. Therefore, the functional interactions between cardiac output and other traits in the O2 pathway underlie the adaptive evolution of aerobic capacities.


Asunto(s)
Evolución Biológica , Gasto Cardíaco , Corazón , Peromyscus , Animales , Peromyscus/fisiología , Corazón/fisiología , Gasto Cardíaco/fisiología , Altitud , Aclimatación/fisiología , Consumo de Oxígeno/fisiología , Termogénesis/fisiología , Oxígeno/metabolismo , Aerobiosis
3.
Nutrients ; 16(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38999749

RESUMEN

Undernutrition (UN) increases child vulnerability to illness and mortality. Caused by a low amount and/or poor quality of food intake, it impacts physical, cognitive, and social development. Modern types of food consumption have given highly processed food a higher cultural value compared to minimally processed food. OBJECTIVE: The objective of this study was to evaluate the effect on growth, metabolism, physical activity (PA), memory, inflammation, and toxicity of an enriched black corn chip (BC) made with endemic ingredients on post-weaned UN mice. METHODS: A chip was made with a mixture of black corn, fava beans, amaranth, and nopal cactus. To probe the effects of UN, UN was induced in 3wo post-weaned male C57Bl/6j mice through a low-protein diet (LPD-50% of the regular requirement of protein) for 3w. Then, the BC was introduced to the animals' diet (17%) for 5w; murinometric parameters were measured, as were postprandial glucose response, PA, and short-term memory. Histological analysis was conducted on the liver and kidneys to measure toxicity. Gene expression related to energy balance, thermogenesis, and inflammation was measured in adipose and hypothalamic tissues. RESULTS: Treatment with the BC significantly improved mouse growth, even with a low protein intake, as evidenced by a significant increase in body weight, tail length, cerebral growth, memory improvement, physical activation, normalized energy expenditure (thermogenesis), and orexigenic peptides (AGRP and NPY). It decreased anorexigenic peptides (POMC), and there was no tissue toxicity. CONCLUSIONS: BC treatment, even with persistent low protein intake, is a promising strategy against UN, as it showed efficacy in correcting growth deficiency, cognitive impairment, and metabolic problems linked to treatment by adjusting energy expenditure, which led to the promotion of energy intake and regulation of thermogenesis, all by using low-cost, accessible, and endemic ingredients.


Asunto(s)
Modelos Animales de Enfermedad , Desnutrición , Ratones Endogámicos C57BL , Zea mays , Animales , Masculino , Ratones , Metabolismo Energético , Dieta con Restricción de Proteínas , Hígado/metabolismo , Alimentos Fortificados , Termogénesis
4.
Front Endocrinol (Lausanne) ; 15: 1396965, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38982992

RESUMEN

Adipose tissues, particularly beige and brown adipose tissue, play crucial roles in energy metabolism. Brown adipose tissues' thermogenic capacity and the appearance of beige cells within white adipose tissue have spurred interest in their metabolic impact and therapeutic potential. Brown and beige fat cells, activated by environmental factors like cold exposure or by pharmacology, share metabolic mechanisms that drive non-shivering thermogenesis. Understanding these two cell types requires advanced, yet broadly applicable in vitro models that reflect the complex microenvironment and vasculature of adipose tissues. Here we present mouse vascularized adipose spheroids of the stromal vascular microenvironment from inguinal white adipose tissue, a tissue with 'beiging' capacity in mice and humans. We show that adding a scaffold improves vascular sprouting, enhances spheroid growth, and upregulates adipogenic markers, thus reflecting increased adipocyte maturity. Transcriptional profiling via RNA sequencing revealed distinct metabolic pathways upregulated in our vascularized adipose spheroids, with increased expression of genes involved in glucose metabolism, lipid metabolism, and thermogenesis. Functional assessment demonstrated increased oxygen consumption in vascularized adipose spheroids compared to classical 2D cultures, which was enhanced by ß-adrenergic receptor stimulation correlating with elevated ß-adrenergic receptor expression. Moreover, stimulation with the naturally occurring adipokine, FGF21, induced Ucp1 mRNA expression in the vascularized adipose spheroids. In conclusion, vascularized inguinal white adipose tissue spheroids provide a physiologically relevant platform to study how the stromal vascular microenvironment shapes adipocyte responses and influence activated thermogenesis in beige adipocytes.


Asunto(s)
Esferoides Celulares , Termogénesis , Animales , Ratones , Esferoides Celulares/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/citología , Ratones Endogámicos C57BL , Masculino , Adipocitos/metabolismo , Adipocitos/citología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/citología , Células Cultivadas , Adipocitos Beige/metabolismo , Adipocitos Beige/citología , Metabolismo Energético , Adipogénesis/fisiología , Sistemas Microfisiológicos
5.
Biol Sex Differ ; 15(1): 53, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987854

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with increased obesity, hyperandrogenism, and altered brown adipose tissue (BAT) thermogenesis. MicroRNAs play critical functions in brown adipocyte differentiation and maintenance. We aim to study the role of microRNA-21 (miR-21) in altered energy homeostasis and BAT thermogenesis in a PCOS mouse model of peripubertal androgen exposure. METHODS: Three-week-old miR-21 knockout (miR21KO) or wild-type (WT) female mice were treated with dihydrotestosterone (DHT) or vehicle for 90 days. Body composition was determined by EchoMRI. Energy expenditure (EE), oxygen consumption (VO2), carbon dioxide production (VCO2), and respiratory exchange ratio (RER) were measured by indirect calorimetry. Androgen receptor (AR), and markers of adipogenesis, de novo lipogenesis, angiogenesis, extracellular matrix remodeling, and thermogenesis were quantified by RT-qPCR and/or Western-blot. RESULTS: MiR-21 ablation attenuated DHT-mediated increase in body weight while having no effect on fat or BAT mass. MiR-21 ablation attenuated DHT-mediated BAT AR upregulation. MiR-21 ablation did not alter EE; however, miR21KO DHT-treated mice have reduced VO2, VCO2, and RER. MiR-21 ablation reversed DHT-mediated decrease in food intake and increase in sleep time. MiR-21 ablation decreased some adipogenesis (Adipoq, Pparγ, and Cebpß) and extracellular matrix remodeling (Mmp-9 and Timp-1) markers expression in DHT-treated mice. MiR-21 ablation abolished DHT-mediated increases in thermogenesis markers Cpt1a and Cpt1b, while decreasing CIDE-A expression. CONCLUSIONS: Our findings suggest that BAT miR-21 may play a role in regulating DHT-mediated thermogenic dysfunction in PCOS. Modulation of BAT miR-21 levels could be a novel therapeutic approach for the treatment of PCOS-associated metabolic derangements.


Polycystic ovary syndrome (PCOS) is a common hormone disorder in premenopausal women, often linked to obesity and abnormal brown fat tissue activity. Women with PCOS have elevated male hormones, which are responsible for many metabolic problems. Our study focuses on understanding the role of microRNA-21 (miR-21) in the energy balance and brown fat tissue activity in a PCOS mouse model. We studied female mice with and without miR-21, treating them with a male hormone. We measured body composition and energy expenditure. We also analyzed the levels of specific genes and proteins related to fat tissue and energy production. Our findings showed that mice lacking miR-21 had less weight gain in response to male hormones, without fat or brown fat tissue mass changes. They also had reduced energy production, changed eating habits, and altered expression of genes related to fat tissue and energy production. In conclusion, our study suggests that miR-21 in brown fat tissue may regulate the energy imbalance caused by male hormones in PCOS. Adjusting miR-21 levels in brown fat tissue could be a new way to address the metabolic issues associated with PCOS.


Asunto(s)
Adipogénesis , Tejido Adiposo Pardo , Modelos Animales de Enfermedad , Ratones Noqueados , MicroARNs , Síndrome del Ovario Poliquístico , Termogénesis , Animales , Síndrome del Ovario Poliquístico/metabolismo , Femenino , MicroARNs/metabolismo , MicroARNs/genética , Tejido Adiposo Pardo/metabolismo , Dihidrotestosterona/farmacología , Ratones , Ratones Endogámicos C57BL , Receptores Androgénicos/metabolismo
6.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000187

RESUMEN

The ketogenic diet (KD) is characterized by minimal carbohydrate, moderate protein, and high fat intake, leading to ketosis. It is recognized for its efficiency in weight loss, metabolic health improvement, and various therapeutic interventions. The KD enhances glucose and lipid metabolism, reducing triglycerides and total cholesterol while increasing high-density lipoprotein levels and alleviating dyslipidemia. It significantly influences adipose tissue hormones, key contributors to systemic metabolism. Brown adipose tissue, essential for thermogenesis and lipid combustion, encounters modified UCP1 levels due to dietary factors, including the KD. UCP1 generates heat by uncoupling electron transport during ATP synthesis. Browning of the white adipose tissue elevates UCP1 levels in both white and brown adipose tissues, a phenomenon encouraged by the KD. Ketone oxidation depletes intermediates in the Krebs cycle, requiring anaplerotic substances, including glucose, glycogen, or amino acids, for metabolic efficiency. Methylation is essential in adipogenesis and the body's dietary responses, with DNA methylation of several genes linked to weight loss and ketosis. The KD stimulates FGF21, influencing metabolic stability via the UCP1 pathways. The KD induces a reduction in muscle mass, potentially involving anti-lipolytic effects and attenuating proteolysis in skeletal muscles. Additionally, the KD contributes to neuroprotection, possesses anti-inflammatory properties, and alters epigenetics. This review encapsulates the metabolic effects and signaling induced by the KD in adipose tissue and major metabolic organs.


Asunto(s)
Dieta Cetogénica , Humanos , Animales , Tejido Adiposo/metabolismo , Metabolismo de los Lípidos , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Metabolismo Energético , Tejido Adiposo Pardo/metabolismo , Termogénesis
7.
J Agric Food Chem ; 72(28): 15765-15777, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38970495

RESUMEN

Konjac glucomannan (KGM), high-viscosity dietary fiber, is utilized in weight management. Previous investigations on the appetite-suppressing effects of KGM have centered on intestinal responses to nutrients and gastric emptying rates, with less focus on downstream hypothalamic neurons of satiety hormones. In our studies, the molecular mechanisms through which KGM and its degradation products influence energy homeostasis via the adipocyte-hypothalamic axis have been examined. It was found that high-viscosity KGM more effectively stimulates enteroendocrine cells to release glucagon-like peptide-1 (GLP-1) and reduces ghrelin production, thereby activating hypothalamic neurons and moderating short-term satiety. Conversely, low-viscosity DKGM has been shown to exhibit stronger anti-inflammatory properties in the hypothalamus, enhancing hormone sensitivity and lowering the satiety threshold. Notably, both KGM and DKGM significantly reduced leptin signaling and fatty acid signaling in adipose tissue and activated brown adipose tissue thermogenesis to suppress pro-opiomelanocortin (POMC) expression and activate agouti-related protein (AgRP) expression, thereby reducing food intake and increasing energy expenditure. Additionally, high-viscosity KGM has been found to activate the adipocyte-hypothalamus axis more effectively than DKGM, thereby promoting greater daily energy expenditure. These findings provide novel insights into the adipocyte-hypothalamic axis for KGM to suppress appetite and reduce weight.


Asunto(s)
Adipocitos , Regulación del Apetito , Dieta Alta en Grasa , Metabolismo Energético , Hipotálamo , Ratones Endogámicos C57BL , Animales , Ratones , Metabolismo Energético/efectos de los fármacos , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Masculino , Regulación del Apetito/efectos de los fármacos , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Humanos , Péptido 1 Similar al Glucagón/metabolismo , Ghrelina/metabolismo , Leptina/metabolismo , Proteína Relacionada con Agouti/metabolismo , Proteína Relacionada con Agouti/genética , Termogénesis/efectos de los fármacos , Proopiomelanocortina/metabolismo , Proopiomelanocortina/genética , Obesidad/metabolismo , Obesidad/fisiopatología , Obesidad/dietoterapia , Mananos
8.
Ann Endocrinol (Paris) ; 85(3): 184-189, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38871497

RESUMEN

Brown adipose tissue (BAT) and beige adipose tissues are important contributors to cold-induced whole body thermogenesis in rodents. The documentation in humans of cold- and ß-adrenergic receptor agonist-stimulated BAT glucose uptake using positron emission tomography (PET) and of a decrease of this response in individuals with cardiometabolic disorders led to the suggestion that BAT/beige adipose tissues could be relevant targets for prevention and treatment of these conditions. In this brief review, we will critically assess this question by first describing the basic rationale for this affirmation, second by examining the evidence in human studies, and third by discussing the possible means to activate the thermogenic response of these tissues in humans.


Asunto(s)
Tejido Adiposo Beige , Tejido Adiposo Pardo , Termogénesis , Humanos , Tejido Adiposo Pardo/fisiología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Termogénesis/fisiología , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Beige/fisiología , Animales , Tomografía de Emisión de Positrones , Agonistas Adrenérgicos beta/farmacología , Obesidad/metabolismo , Obesidad/terapia , Frío
10.
Ann Endocrinol (Paris) ; 85(3): 179-183, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38871515

RESUMEN

During the past years, several drugs have been developed for the treatment of obesity. Some are already used in clinical practice: orlistat, GLP-1 receptor agonists (RA), GLP-1/GIP biagonists and the melanocortin 4 receptor (MC4R) agonist, setmelanotide. Some should be available in the future: GLP-1/glucagon biagonists, GLP-1/GIP/glucagon triagonists. These drugs act mainly by reducing food intake or fat absorption. However, many of them show specific effects on the adipose tissue. All these drugs show significant reduction of fat mass and, more particularly of visceral fat. If most of the drugs, except orlistat, have been shown to increase energy expenditure in rodents with enhanced thermogenesis, this has not yet been clearly demonstrated in humans. However, biagonists or triagonist stimulating glucagon seem to a have a more potent effect to increase thermogenesis in the adipose tissue and, thus, energy expenditure. Most of these drugs have been shown to increase the production of adiponectin and to reduce the production of pro-inflammatory cytokines by the adipose tissue. GLP-1RAs reduce the size of adipocytes and promote their differentiation. GLP-1RAS and GLP-1/GIP biagonists reduce, in the adipose tissue, the expression of several genes involved in lipogenesis. Further studies are still needed to clarify the precise roles, on the adipose tissue, of these drugs dedicated for the treatment of obesity.


Asunto(s)
Tejido Adiposo , Fármacos Antiobesidad , Metabolismo Energético , Obesidad , Humanos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Fármacos Antiobesidad/uso terapéutico , Fármacos Antiobesidad/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Metabolismo Energético/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Termogénesis/efectos de los fármacos , Termogénesis/fisiología , Péptido 1 Similar al Glucagón/agonistas , Orlistat/uso terapéutico , Orlistat/farmacología
11.
Molecules ; 29(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893341

RESUMEN

Perilla frutescens var. acuta (Lamiaceae) is widely used not only as an oil or a spice, but also as a traditional medicine to treat colds, coughs, fever, and indigestion. As an ongoing effort, luteolin-7-O-diglucuronide (1), apigenin-7-O-diglucuronide (2), and rosmarinic acid (3) isolated from P. frutescens var. acuta were investigated for their anti-adipogenic and thermogenic activities in 3T3-L1 cells. Compound 1 exhibited a strong inhibition against adipocyte differentiation by suppressing the expression of Pparg and Cebpa over 52.0% and 45.0%, respectively. Moreover, 2 inhibited the expression of those genes in a dose-dependent manner [Pparg: 41.7% (5 µM), 62.0% (10 µM), and 81.6% (50 µM); Cebpa: 13.8% (5 µM), 18.4% (10 µM), and 37.2% (50 µM)]. On the other hand, the P. frutescens var. acuta water extract showed moderate thermogenic activities. Compounds 1 and 3 also induced thermogenesis in a dose-dependent manner by stimulating the mRNA expressions of Ucp1, Pgc1a, and Prdm16. Moreover, an LC-MS/MS chromatogram of the extract was acquired using UHPLC-MS2 and it was analyzed by feature-based molecular networking (FBMN) and the Progenesis QI software (version 3.0). The chemical profiling of the extract demonstrated that flavonoids and their glycoside derivatives, including those isolated earlier as well as rosmarinic acid, are present in P. frutescens var. acuta.


Asunto(s)
Células 3T3-L1 , Fármacos Antiobesidad , Cinamatos , Depsidos , Perilla frutescens , Extractos Vegetales , Ácido Rosmarínico , Ratones , Perilla frutescens/química , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Depsidos/farmacología , Depsidos/química , Depsidos/aislamiento & purificación , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/química , Fármacos Antiobesidad/aislamiento & purificación , Cinamatos/farmacología , Cinamatos/química , Cinamatos/aislamiento & purificación , Adipogénesis/efectos de los fármacos , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Diferenciación Celular/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Termogénesis/efectos de los fármacos
12.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928011

RESUMEN

Adipose tissue is conventionally recognized as a metabolic organ responsible for storing energy. However, a proportion of adipose tissue also functions as a thermogenic organ, contributing to the inhibition of weight gain and prevention of metabolic diseases. In recent years, there has been significant progress in the study of thermogenic fats, particularly brown adipose tissue (BAT). Despite this progress, the mechanism underlying thermogenesis in beige adipose tissue remains highly controversial. It is widely acknowledged that beige adipose tissue has three additional thermogenic mechanisms in addition to the conventional UCP1-dependent thermogenesis: Ca2+ cycling thermogenesis, creatine substrate cycling thermogenesis, and triacylglycerol/fatty acid cycling thermogenesis. This paper delves into these three mechanisms and reviews the latest advancements in the molecular regulation of thermogenesis from the molecular genetic perspective. The objective of this review is to provide readers with a foundation of knowledge regarding the beige fats and a foundation for future research into the mechanisms of this process, which may lead to the development of new strategies for maintaining human health.


Asunto(s)
Adipocitos Beige , Termogénesis , Termogénesis/genética , Humanos , Adipocitos Beige/metabolismo , Animales , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético , Calcio/metabolismo , Ácidos Grasos/metabolismo , Triglicéridos/metabolismo , Tejido Adiposo Beige/metabolismo
13.
Front Endocrinol (Lausanne) ; 15: 1395750, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859907

RESUMEN

Background: The beneficial effect of thermogenic adipocytes in maintaining body weight and protecting against metabolic disorders has raised interest in understanding the regulatory mechanisms defining white and beige adipocyte identity. Although alternative splicing has been shown to propagate adipose browning signals in mice, this has yet to be thoroughly investigated in human adipocytes. Methods: We performed parallel white and beige adipogenic differentiation using primary adipose stem cells from 6 unrelated healthy subjects and assessed differential gene and isoform expression in mature adipocytes by RNA sequencing. Results: We find 777 exon junctions with robust differential usage between white and beige adipocytes in all 6 subjects, mapping to 562 genes. Importantly, only 10% of these differentially spliced genes are also differentially expressed, indicating that alternative splicing constitutes an additional layer of gene expression regulation during beige adipocyte differentiation. Functional classification of alternative isoforms points to a gain of function for key thermogenic transcription factors such as PPARG and CITED1, and enzymes such as PEMT, or LPIN1. We find that a large majority of the splice variants arise from differential TSS usage, with beige-specific TSSs being enriched for PPARγ and MED1 binding compared to white-specific TSSs. Finally, we validate beige specific isoform expression at the protein level for two thermogenic regulators, PPARγ and PEMT. Discussion: These results suggest that differential isoform expression through alternative TSS usage is an important regulatory mechanism for human adipocyte thermogenic specification.


Asunto(s)
Adipocitos Beige , Empalme Alternativo , Isoformas de Proteínas , Termogénesis , Humanos , Adipocitos Beige/metabolismo , Termogénesis/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Diferenciación Celular , Adipogénesis/genética , Masculino , Femenino , Adulto , Células Cultivadas , Regulación de la Expresión Génica , PPAR gamma/genética , PPAR gamma/metabolismo
14.
Science ; 384(6700): 1111-1117, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38843333

RESUMEN

Brown adipose tissue (BAT) is a heater organ that expresses thermogenic uncoupling protein 1 (UCP1) to maintain high body temperatures during cold stress. BAT thermogenesis is considered an overarching mammalian trait, but its evolutionary origin is unknown. We show that adipose tissue of marsupials, which diverged from eutherian mammals ~150 million years ago, expresses a nonthermogenic UCP1 variant governed by a partial transcriptomic BAT signature similar to that found in eutherian beige adipose tissue. We found that the reconstructed UCP1 sequence of the common eutherian ancestor displayed typical thermogenic activity, whereas therian ancestor UCP1 is nonthermogenic. Thus, mammalian adipose tissue thermogenesis may have evolved in two distinct stages, with a prethermogenic stage in the common therian ancestor linking UCP1 expression to adipose tissue and thermal stress. We propose that in a second stage, UCP1 acquired its thermogenic function specifically in eutherians, such that the onset of mammalian BAT thermogenesis occurred only after the divergence from marsupials.


Asunto(s)
Tejido Adiposo Pardo , Evolución Biológica , Marsupiales , Termogénesis , Proteína Desacopladora 1 , Animales , Humanos , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Euterios/genética , Euterios/fisiología , Evolución Molecular , Marsupiales/genética , Marsupiales/fisiología , Filogenia , Termogénesis/genética , Transcriptoma , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
15.
Science ; 384(6700): 1065-1066, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38843350

RESUMEN

Comparative genomics elucidates the steps enabling heat production in fat tissue.


Asunto(s)
Tejido Adiposo Pardo , Evolución Biológica , Mamíferos , Termogénesis , Animales , Mamíferos/genética , Mamíferos/fisiología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/fisiología , Humanos , Genómica
16.
Nat Metab ; 6(6): 1000-1007, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831000

RESUMEN

The daily light-dark cycle is a key zeitgeber (time cue) for entraining an organism's biological clock, whereby light sensing by retinal photoreceptors, particularly intrinsically photosensitive retinal ganglion cells, stimulates the suprachiasmatic nucleus of the hypothalamus, a central pacemaker that in turn orchestrates the rhythm of peripheral metabolic activities. Non-rhythmic effects of light on metabolism have also been long known, and their transduction mechanisms are only beginning to unfold. Here, we summarize emerging evidence that, in mammals, light exposure or deprivation profoundly affects glucose homeostasis, thermogenesis and other metabolic activities in a clock-independent manner. Such light regulation could involve melanopsin-based, intrinsically photosensitive retinal ganglion cell-initiated brain circuits via the suprachiasmatic nucleus of the hypothalamus and other nuclei, or direct stimulation of opsins expressed in the hypothalamus, adipose tissue, blood vessels and skin to regulate sympathetic tone, lipolysis, glucose uptake, mitochondrial activation, thermogenesis, food intake, blood pressure and melanogenesis. These photic signalling events may coordinate with circadian-based mechanisms to maintain metabolic homeostasis, with dysregulation of this system underlying metabolic diseases caused by aberrant light exposure, such as environmental night light and shift work.


Asunto(s)
Ritmo Circadiano , Luz , Animales , Ritmo Circadiano/fisiología , Humanos , Mamíferos/metabolismo , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiología , Homeostasis , Termogénesis/fisiología , Glucosa/metabolismo , Fotoperiodo , Opsinas de Bastones/metabolismo
17.
J Endocrinol ; 262(2)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38842921

RESUMEN

Characteristic symptoms of hyperthyroidism include weight loss, heart palpitation, and sweating. Thyroid hormones (TH) can stimulate thermogenesis through central and peripheral mechanisms. Previous studies have shown an association between dysfunction of cardiotrophin-like cytokine factor 1 (CLCF1) and cold-induced sweating syndrome, with recent research also indicating a link between CLCF1 and brown adipose tissue thermogenesis. However, it remains unclear whether CLCF1 and TH have synergistic or antagonistic effects on thermogenesis. This study aims to investigate the influence of thyroid hormone on circulating CLCF1 levels in humans and explore the potential possibilities of thyroid hormone in regulating energy metabolism by modulating Clcf1 in mice. By recruiting hyperthyroid patients and healthy subjects, we observed significantly lower serum CLCF1 levels in hyperthyroid patients compared to healthy subjects, with serum CLCF1 levels independently associated with hyperthyroidism after adjusting for potential confounders. Tissue analysis from mice treated with T3 revealed a decrease in CLCF1 expression in BAT and iWAT of C57BL/6 mice. These findings suggest that TH may play a role in regulating CLCF1 expression in adipose tissue.


Asunto(s)
Hipertiroidismo , Ratones Endogámicos C57BL , Triyodotironina , Hipertiroidismo/sangre , Animales , Masculino , Triyodotironina/sangre , Humanos , Ratones , Adulto , Femenino , Persona de Mediana Edad , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Citocinas/sangre , Citocinas/metabolismo , Termogénesis/efectos de los fármacos , Estudios de Casos y Controles
18.
Lifestyle Genom ; 17(1): 72-81, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38889698

RESUMEN

INTRODUCTION: Obesity, characterized by excess adipose tissue, is a major public health problem worldwide. Brown adipose tissue (BAT) and beige adipose tissue participate in thermogenesis through uncoupling protein 1 (UCP1). Polyphenols including those from Calafate (a native polyphenol-rich Patagonian berry), are considered as potential anti-obesity compounds due to their pro-thermogenic characteristics. However, polyphenols are mainly metabolized by the gut microbiota (GM) that may influence their bioactivity and bioavailability. The aim of this study was to determine the impact of dietary administration with a Calafate polyphenol-rich extract on thermogenic activity of BAT and beige adipose tissue and GM composition. METHODS: Eight-week-old C57BL6 mice (n = 30) were divided into 4 groups to receive for 24 weeks a control diet (C), a high-fat diet alone (HF), or high-fat diet supplemented with Calafate extract (HFC) or the same high-fat diet supplemented with Calafate extract but treated with antibiotics (HFCAB) from week 19-20. Administration with Calafate extract (50 mg/kg per day) was carried out for 3 weeks from week 21-23 in the HFC and HFCAB groups. After euthanasia, gene expression of thermogenic markers was analyzed in BAT and inguinal white adipose tissue (iWAT). Transmission electron microscopy was performed to assess mitochondrial morphology and cristae density in BAT. GM diversity and composition were characterized by deep sequencing with the MiSeq Illumina platform. RESULTS: Calafate extract administration had no effect on weight gain in mice fed a high-fat diet. However, it prevented alterations in mitochondrial cristae induced by HFD and increased Dio2 expression in BAT and iWAT. The intervention also influenced the GM composition, preventing changes in specific bacterial taxa induced by the high-fat diet. However, the antibiotic treatment prevented in part these effects, suggesting the implications of GM. CONCLUSION: These results suggest that the acute administration of a Calafate extract modulates the expression of thermogenic markers, prevents alterations in mitochondrial cristae and intestinal microbiota in preclinical models. The study highlights the complex interaction between polyphenols, thermogenesis, and the GM, providing valuable insights into their potential roles in the treatment of obesity-related metabolic diseases.


Asunto(s)
Tejido Adiposo Pardo , Dieta Alta en Grasa , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Extractos Vegetales , Termogénesis , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Termogénesis/efectos de los fármacos , Ratones , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Extractos Vegetales/farmacología , Masculino , Obesidad/metabolismo , Proteína Desacopladora 1/metabolismo , Tejido Adiposo Beige/efectos de los fármacos , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Biomarcadores
19.
J Agric Food Chem ; 72(26): 14786-14798, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38902910

RESUMEN

Some thermal degradants of curcuminoids have demonstrated moderate health benefits in previous studies. Feruloyl acetone (FER), recently identified as a thermal degradant of curcumin, has been previously associated with anticancer and antioxidative effects, yet its other capabilities remain unexplored. Moreover, earlier reports suggest that methoxy groups on the aromatic ring may influence the functionality of the curcuminoids. To address these gaps, an animal study was conducted to investigate the antiobesity effects of both FER and its demethoxy counterpart (DFER) on mice subjected to a high-fat diet. The results demonstrated the significant prevention of weight gain and enlargement of the liver and various adipose tissues by both samples. Furthermore, these supplements exhibited a lipid regulatory effect in the liver through the adiponectin/AMPK/SIRT1 pathway, promoted thermogenesis via AMPK/PGC-1α activation, and positively influenced gut-microbial-produced short-chain fatty acid (SCFA) levels. Notably, DFER demonstrated superior overall efficacy in combating obesity, while FER displayed a significant effect in modulating inflammatory responses. It is considered that SCFA may be responsible for the distinct effects of FER and DFER in the animal study. Future studies are anticipated to delve into the efficacy of curcuminoid degradants, encompassing toxicity and pharmacokinetic evaluations.


Asunto(s)
Fármacos Antiobesidad , Curcumina , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Obesidad , Animales , Curcumina/química , Curcumina/farmacología , Curcumina/metabolismo , Ratones , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Masculino , Fármacos Antiobesidad/química , Fármacos Antiobesidad/administración & dosificación , Humanos , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/química , Termogénesis/efectos de los fármacos , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo/química
20.
Eur J Endocrinol ; 191(1): 106-115, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917410

RESUMEN

OBJECTIVE: Brown adipose tissue (BAT) is a therapeutic target for obesity. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) is commonly used to quantify human BAT mass and activity. Detectable 18F-FDG uptake by BAT is associated with reduced prevalence of cardiometabolic disease. However, 18F-FDG uptake may not always be a reliable marker of BAT thermogenesis, for example, insulin resistance may reduce glucose uptake. Uncoupling protein 1 (UCP1) is the key thermogenic protein in BAT. Therefore, we hypothesised that UCP1 expression may be altered in individuals with cardiometabolic risk factors. METHODS: We quantified UCP1 expression as an alternative marker of thermogenic capacity in BAT and white adipose tissue (WAT) samples (n = 53) and in differentiated brown and white pre-adipocytes (n = 85). RESULTS: UCP1 expression in BAT, but not in WAT or brown/white differentiated pre-adipocytes, was reduced with increasing age, obesity, and adverse cardiometabolic risk factors such as fasting glucose, insulin, and blood pressure. However, UCP1 expression in BAT was preserved in obese subjects of <40 years of age. To determine if BAT activity was also preserved in vivo, we undertook a case-control study, performing 18F-FDG scanning during mild cold exposure in young (mean age ∼22 years) normal weight and obese volunteers. 18F-FDG uptake by BAT and BAT volume were similar between groups, despite increased insulin resistance. CONCLUSION: 18F-FDG uptake by BAT and UCP1 expression are preserved in young obese adults. Older subjects retain precursor cells with the capacity to form new thermogenic adipocytes. These data highlight the therapeutic potential of BAT mass expansion and activation in obesity.


Asunto(s)
Tejido Adiposo Pardo , Factores de Riesgo Cardiometabólico , Fluorodesoxiglucosa F18 , Obesidad , Proteína Desacopladora 1 , Humanos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/diagnóstico por imagen , Proteína Desacopladora 1/metabolismo , Adulto , Masculino , Femenino , Persona de Mediana Edad , Adulto Joven , Obesidad/metabolismo , Termogénesis/fisiología , Adolescente , Tomografía de Emisión de Positrones , Estudios de Casos y Controles , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/diagnóstico por imagen , Anciano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...