Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.333
Filtrar
1.
Nat Commun ; 15(1): 5902, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003266

RESUMEN

Analogous of pixels to two-dimensional pictures, voxels-in the form of either small cubes or spheres-are the basic building blocks of three-dimensional objects. However, precise manipulation of viscoelastic bio-ink voxels in three-dimensional space represents a grand challenge in both soft matter science and biomanufacturing. Here, we present a voxelated bioprinting technology that enables the digital assembly of interpenetrating double-network hydrogel droplets made of polyacrylamide/alginate-based or hyaluronic acid/alginate-based polymers. The hydrogels are crosslinked via additive-free and biofriendly click reaction between a pair of stoichiometrically matched polymers carrying norbornene and tetrazine groups, respectively. We develop theoretical frameworks to describe the crosslinking kinetics and stiffness of the hydrogels, and construct a diagram-of-state to delineate their mechanical properties. Multi-channel print nozzles are developed to allow on-demand mixing of highly viscoelastic bio-inks without significantly impairing cell viability. Further, we showcase the distinctive capability of voxelated bioprinting by creating highly complex three-dimensional structures such as a hollow sphere composed of interconnected yet distinguishable hydrogel particles. Finally, we validate the cytocompatibility and in vivo stability of the printed double-network scaffolds through cell encapsulation and animal transplantation.


Asunto(s)
Resinas Acrílicas , Alginatos , Bioimpresión , Ácido Hialurónico , Hidrogeles , Bioimpresión/métodos , Hidrogeles/química , Alginatos/química , Animales , Ácido Hialurónico/química , Resinas Acrílicas/química , Ratones , Tinta , Impresión Tridimensional , Humanos , Ingeniería de Tejidos/métodos , Supervivencia Celular , Materiales Biocompatibles/química
2.
Biomed Phys Eng Express ; 10(5)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959869

RESUMEN

Objective. The availability of tissue-mimicking materials (TMMs) for manufacturing high-quality phantoms is crucial for standardization, evaluating novel quantitative approaches, and clinically translating new imaging modalities, such as photoacoustic imaging (PAI). Recently, a gel comprising the copolymer styrene-ethylene/butylene-styrene (SEBS) in mineral oil has shown significant potential as TMM due to its optical and acoustic properties akin to soft tissue. We propose using artists' oil-based inks dissolved and diluted in balsam turpentine to tune the optical properties.Approach. A TMM was fabricated by mixing a SEBS copolymer and mineral oil, supplemented with additives to tune its optical absorption and scattering properties independently. A systematic investigation of the tuning accuracies and relationships between concentrations of oil-based pigments and optical absorption properties of the TMM across visible and near-infrared wavelengths using collimated transmission spectroscopy was conducted. The photoacoustic spectrum of various oil-based inks was studied to analyze the effect of increasing concentration and depth.Main results. Artists' oil-based inks dissolved in turpentine proved effective as additives to tune the optical absorption properties of mineral oil SEBS-gel with high accuracy. The TMMs demonstrated long-term stability and suitability for producing phantoms with desired optical absorption properties for PAI studies.Significance. The findings, including tuning of optical absorption and spectral shape, suggest that this TMM facilitates the development of more sophisticated phantoms of arbitrary shapes. This approach holds promise for advancing the development of PAI, including investigation of the spectral coloring effect. In addition, it can potentially aid in the development and clinical translation of ultrasound optical tomography.


Asunto(s)
Fantasmas de Imagen , Técnicas Fotoacústicas , Polímeros , Técnicas Fotoacústicas/métodos , Polímeros/química , Aceite Mineral/química , Tinta , Materiales Biomiméticos/química , Humanos , Trementina/química , Aceites/química
3.
Appl Environ Microbiol ; 90(7): e0027624, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38953654

RESUMEN

Tattooing and use of permanent makeup (PMU) have dramatically increased over the last decade, with a concomitant increase in ink-related infections. Studies have shown evidence that commercial tattoo and PMU inks are frequently contaminated with pathogenic microorganisms. Considering that tattoo inks are placed into the dermal layer of the skin where anaerobic bacteria can thrive and cause infections in low-oxygen environments, the prevalence of anaerobic and aerobic bacteria should be assessed in tattoo and PMU inks. In this study, we tested 75 tattoo and PMU inks using the analytical methods described in the FDA Bacteriological Analytical Manual Chapter 23 for the detection of both aerobic and anaerobic bacterial contamination, followed by 16S rRNA gene sequencing for microbial identification. Of 75 ink samples, we found 26 contaminated samples with 34 bacterial isolates taxonomically classified into 14 genera and 22 species. Among the 34 bacterial isolates, 19 were identified as possibly pathogenic bacterial strains. Two species, namely Cutibacterium acnes (four strains) and Staphylococcus epidermidis (two strains) were isolated under anaerobic conditions. Two possibly pathogenic bacterial strains, Staphylococcus saprophyticus and C. acnes, were isolated together from the same ink samples (n = 2), indicating that tattoo and PMU inks can contain both aerobic (S. saprophyticus) and anaerobic bacteria (C. acnes). No significant association was found between sterility claims on the ink label and the absence of bacterial contamination. The results indicate that tattoo and PMU inks can also contain anaerobic bacteria. IMPORTANCE: The rising popularity of tattooing and permanent makeup (PMU) has led to increased reports of ink-related infections. This study is the first to investigate the presence of both aerobic and anaerobic bacteria in commercial tattoo and PMU inks under aerobic and anaerobic conditions. Our findings reveal that unopened and sealed tattoo inks can harbor anaerobic bacteria, known to thrive in low-oxygen environments, such as the dermal layer of the skin, alongside aerobic bacteria. This suggests that contaminated tattoo inks could be a source of infection from both types of bacteria. The results emphasize the importance of monitoring these products for both aerobic and anaerobic bacteria, including possibly pathogenic microorganisms.


Asunto(s)
Bacterias Aerobias , Bacterias Anaerobias , Tinta , ARN Ribosómico 16S , Tatuaje , Bacterias Anaerobias/aislamiento & purificación , Bacterias Anaerobias/genética , Bacterias Anaerobias/clasificación , Bacterias Aerobias/aislamiento & purificación , Bacterias Aerobias/clasificación , Bacterias Aerobias/genética , ARN Ribosómico 16S/genética
4.
Nat Commun ; 15(1): 5839, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992011

RESUMEN

3D printing has been widely used for on-demand prototyping of complex three-dimensional structures. In biomedical applications, PEDOT:PSS has emerged as a promising material in versatile bioelectronics due to its tissue-like mechanical properties and suitable electrical properties. However, previously developed PEDOT:PSS inks have not been able to fully utilize the advantages of commercial 3D printing due to its long post treatment times, difficulty in high aspect ratio printing, and low conductivity. We propose a one-shot strategy for the fabrication of PEDOT:PSS ink that is able to simultaneously achieve on-demand biocompatibility (no post treatment), structural integrity during 3D printing for tall three-dimensional structures, and high conductivity for rapid-prototyping. By using ionic liquid-facilitated PEDOT:PSS colloidal stacking induced by a centrifugal protocol, a viscoplastic PEDOT:PSS-ionic liquid colloidal (PILC) ink was developed. PILC inks exhibit high-aspect ratio vertical stacking, omnidirectional printability for generating suspended architectures, high conductivity (~286 S/cm), and high-resolution printing (~50 µm). We demonstrate the on-demand and versatile applicability of PILC inks through the fabrication of 3D circuit boards, on-skin physiological signal monitoring e-tattoos, and implantable bioelectronics (opto-electrocorticography recording, low voltage sciatic nerve stimulation and recording from deeper brain layers via 3D vertical spike arrays).


Asunto(s)
Materiales Biocompatibles , Coloides , Conductividad Eléctrica , Líquidos Iónicos , Poliestirenos , Impresión Tridimensional , Líquidos Iónicos/química , Coloides/química , Materiales Biocompatibles/química , Animales , Poliestirenos/química , Ratas , Tinta , Polímeros/química , Tiofenos/química , Neuronas/fisiología , Compuestos Bicíclicos Heterocíclicos con Puentes/química
5.
Biofabrication ; 16(4)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39008993

RESUMEN

Various anisotropic tissue structures exist in organisms, including muscle tissue, skin tissue, and nerve tissue. Replicating anisotropic tissue structuresin vitrohas posed a significant challenge. Three-dimensional (3D) printing technology is often used to fabricate biomimetic structures due to its advantages in manufacturing principle. However, direct 3D printing of freeform anisotropic bioactive structures has not been reported. To tackle this challenge, we developed a ternary F/G/P ink system that integrates the printability of Pluronic F127 (F), the robust bioactivity and photocrosslinking properties of gelatin methacryloyl (G), and the shear-induced alignment functionality of high-molecular-weight polyethylene glycol (P). And through this strategic ternary system combination, freeform anisotropic tissue structures can be 3D printed directly. Moreover, these anisotropic structures exhibit excellent bioactivity, and promote orientational growth of different cells. This advancement holds promise for the repair and replacement of anisotropic tissues within the human body.


Asunto(s)
Gelatina , Tinta , Poloxámero , Impresión Tridimensional , Andamios del Tejido , Anisotropía , Gelatina/química , Poloxámero/química , Humanos , Andamios del Tejido/química , Ingeniería de Tejidos , Polietilenglicoles/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Metacrilatos/química , Ratones
6.
Biofabrication ; 16(4)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38942010

RESUMEN

Traditional three-dimensional (3D) bioprinting has always been associated with the challenge of print fidelity of complex geometries due to the gel-like nature of the bioinks. Embedded 3D bioprinting has emerged as a potential solution to print complex geometries using proteins and polysaccharides-based bioinks. This study demonstrated the Freeform Reversible Embedding of Suspended Hydrogels (FRESH) 3D bioprinting method of chitosan bioink to 3D bioprint complex geometries. 4.5% chitosan was dissolved in an alkali solvent to prepare the bioink. Rheological evaluation of the bioink described its shear-thinning nature. The power law equation was fitted to the shear rate-viscosity plot. The flow index value was found to be less than 1, categorizing the material as pseudo-plastic. The chitosan bioink was extruded into another medium, a thermo-responsive 4.5% gelatin hydrogel. This hydrogel supports the growing print structures while printing. After this, the 3D bioprinted structure was crosslinked with hot water to stabilize the structure. Using this method, we have 3D bioprinted complex biological structures like the human tri-leaflet heart valve, a section of a human right coronary arterial tree, a scale-down outer structure of the human kidney, and a human ear. Additionally, we have shown the mechanical tunability and suturability of the 3D bioprinted structures. This study demonstrates the capability of the chitosan bioink and FRESH method for 3D bioprinting of complex biological models for biomedical applications.


Asunto(s)
Bioimpresión , Quitosano , Hidrogeles , Tinta , Impresión Tridimensional , Reología , Quitosano/química , Bioimpresión/métodos , Humanos , Hidrogeles/química , Ingeniería de Tejidos/métodos , Viscosidad , Válvulas Cardíacas/fisiología
7.
ACS Biomater Sci Eng ; 10(7): 4145-4174, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38822783

RESUMEN

3D bioprinting is recognized as the ultimate additive biomanufacturing technology in tissue engineering and regeneration, augmented with intelligent bioinks and bioprinters to construct tissues or organs, thereby eliminating the stipulation for artificial organs. For 3D bioprinting of soft tissues, such as kidneys, hearts, and other human body parts, formulations of bioink with enhanced bioinspired rheological and mechanical properties were essential. Nanomaterials-based hybrid bioinks have the potential to overcome the above-mentioned problem and require much attention among researchers. Natural and synthetic nanomaterials such as carbon nanotubes, graphene oxides, titanium oxides, nanosilicates, nanoclay, nanocellulose, etc. and their blended have been used in various 3D bioprinters as bioinks and benefitted enhanced bioprintability, biocompatibility, and biodegradability. A limited number of articles were published, and the above-mentioned requirement pushed us to write this review. We reviewed, explored, and discussed the nanomaterials and nanocomposite-based hybrid bioinks for the 3D bioprinting technology, 3D bioprinters properties, natural, synthetic, and nanomaterial-based hybrid bioinks, including applications with challenges, limitations, ethical considerations, potential solution for future perspective, and technological advancement of efficient and cost-effective 3D bioprinting methods in tissue regeneration and healthcare.


Asunto(s)
Bioimpresión , Nanoestructuras , Impresión Tridimensional , Medicina Regenerativa , Ingeniería de Tejidos , Bioimpresión/métodos , Humanos , Medicina Regenerativa/métodos , Nanoestructuras/química , Ingeniería de Tejidos/métodos , Tinta , Andamios del Tejido/química , Animales
8.
Int J Biol Macromol ; 273(Pt 1): 132819, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38830498

RESUMEN

The avascular nature of hyaline cartilage results in limited spontaneous self-repair and regenerative capabilities when damaged. Recent advances in three-dimensional bioprinting have enabled the precise dispensing of cell-laden biomaterials, commonly referred to as 'bioinks', which are emerging as promising solutions for tissue regeneration. An effective bioink for cartilage tissue engineering needs to create a micro-environment that promotes cell differentiation and supports neocartilage tissue formation. In this study, we introduced an innovative bioink composed of photocurable acrylated type I collagen (COLMA), thiol-modified hyaluronic acid (THA), and poly(ethylene glycol) diacrylate (PEGDA) for 3D bioprinting cartilage grafts using human nasal chondrocytes. Both collagen and hyaluronic acid, being key components of the extracellular matrix (ECM) in the human body, provide essential biological cues for tissue regeneration. We evaluated three formulations - COLMA, COLMA+THA, and COLMA+THA+PEGDA - for their printability, cell viability, structural integrity, and capabilities in forming cartilage-like ECM. The addition of THA and PEGDA significantly enhanced these properties, showcasing the potential of this bioink in advancing applications in cartilage repair and reconstructive surgery.


Asunto(s)
Ácido Hialurónico , Ingeniería de Tejidos , Andamios del Tejido , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Ingeniería de Tejidos/métodos , Humanos , Andamios del Tejido/química , Condrocitos/citología , Condrocitos/efectos de los fármacos , Polietilenglicoles/química , Bioimpresión/métodos , Colágeno/química , Impresión Tridimensional , Cartílago/citología , Matriz Extracelular/química , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Tinta
9.
J Food Sci ; 89(7): 3917-3934, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38829741

RESUMEN

Extrusion-based three-dimensional (3D) printing has been extensively studied in the food manufacturing industry. This technology places particular emphasis on the rheological properties of the printing ink. Gel system is the most suitable ink system and benefits from the composition of plant raw materials and gel properties of multiple components; green, healthy aspects of the advantages of the development of plant-based gel system has achieved a great deal of attention. However, the relevant treatment technologies are still only at the laboratory stage. With a view toward encouraging further optimization of ink printing performance and advances in this field, in this review, we present a comprehensive overview of the application of diverse plant-based gel systems in 3D food printing and emphasize the utilization of different treatment methods to enhance the printability of these gel systems. The treatment technologies described in this review are categorized into three distinct groups, physical, chemical, and physicochemical synergistic treatments. We comprehensively assess the specific application of these technologies in various plant-based gel 3D printing systems and present valuable insights regarding the challenges and opportunities for further advances in this field.


Asunto(s)
Geles , Impresión Tridimensional , Reología , Geles/química , Tinta , Plantas/química , Manipulación de Alimentos/métodos
10.
Sci Rep ; 14(1): 12945, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839791

RESUMEN

Extrusion-based bioprinting is an established method in biofabrication. Suitable bioinks have fundamentally different compositions and characteristics, which should be examined, in order to find a perfect model system. Here, we investigate the effect of two alginate-based, yet unalike 3D-printed bioinks, pre-crosslinked alginate-dialdehyde gelatin (ADA-GEL) and a mixture of alginate, hyaluronic acid, and gelatin (Alg/HA/Gel), on the melanoma cell line Mel Im and vice versa in terms of stiffness, shrinkage, cellular behavior and colony formation over 15 days. Rheological stiffness measurements revealed two soft gels with similar storage moduli. The cells did not have a significant impact on the overall stiffness, whereas ADA-GEL (2.5/2.5%) was significantly stiffer than Alg/HA/Gel (0.5/0.1/3%). Regarding the shrinkage of printed constructs, cells had a significant influence, especially in ADA-GEL, which has covalent bonds between the oxidized alginate and gelatin. Multi-photon microscopy exhibited proliferation, cell spreading and migration in ADA-GEL with cell-cell and cell-matrix interaction, dissimilarly to Alg/HA/Gel, in which cells formed spherical, encapsulated colonies. Scanning electron microscopy and histology showed degradation and multi-layered growth on ADA-GEL and fewer examples of escaped cells on Alg/HA/Gel. Both gels serve as proliferation bioink for melanoma with more necrosis in deeper Alg/HA/Gel colonies and differences in spreading and matrix interaction. These findings show the importance of proper characterization of the bioinks for different applications.


Asunto(s)
Alginatos , Bioimpresión , Proliferación Celular , Gelatina , Melanoma , Impresión Tridimensional , Alginatos/química , Melanoma/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Gelatina/química , Bioimpresión/métodos , Humanos , Tinta , Ácido Hialurónico/química , Reología , Andamios del Tejido/química , Ingeniería de Tejidos/métodos
11.
Int J Biol Macromol ; 272(Pt 2): 132884, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38844274

RESUMEN

The food industry is undergoing a significant transformation with the advancement of 3D technology. Researchers in the field are increasingly interested in using protein and protein-polysaccharide composite materials for 3D printing applications. However, maintaining nutritional and sensory properties while guaranteeing printability of these materials is challenging. This review examines the commonly used protein and composite materials in food 3D printing and their roles in printing inks. This review also outlines the essential properties required for 3D printing, including extrudability, appropriate viscoelasticity, thixotropic properties, and gelation properties. Furthermore, it explores the wide range of potential applications for 3D printing technology in novel functional foods such as space food, dysphagia food, kid's food, meat analogue, and other specialized food products.


Asunto(s)
Alimentos Funcionales , Polisacáridos , Impresión Tridimensional , Proteínas , Polisacáridos/química , Proteínas/química , Humanos , Tinta , Viscosidad
12.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38892343

RESUMEN

Nanogenerators possess the capability to harvest faint energy from the environment. Among them, thermoelectric (TE), triboelectric, piezoelectric (PE), and moisture-enabled nanogenerators represent promising approaches to micro-nano energy collection. These nanogenerators have seen considerable progress in material optimization and structural design. Printing technology has facilitated the large-scale manufacturing of nanogenerators. Although inks can be compatible with most traditional functional materials, this inevitably leads to a decrease in the electrical performance of the materials, necessitating control over the rheological properties of the inks. Furthermore, printing technology offers increased structural design flexibility. This review provides a comprehensive framework for ink-based nanogenerators, encompassing ink material optimization and device structural design, including improvements in ink performance, control of rheological properties, and efficient energy harvesting structures. Additionally, it highlights ink-based nanogenerators that incorporate textile technology and hybrid energy technologies, reviewing their latest advancements in energy collection and self-powered sensing. The discussion also addresses the main challenges faced and future directions for development.


Asunto(s)
Tinta , Nanotecnología , Nanotecnología/métodos , Suministros de Energía Eléctrica , Reología , Impresión/métodos
13.
Luminescence ; 39(6): e4800, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923447

RESUMEN

Counterfeiting of banknotes, important documents, and branded goods continues to be a major worldwide problem for governments, businesses, and consumers. This problem has serious financial, security, and health implications. Due to their stability for printing on various substrates, the photochromic anticounterfeiting inks have received important interest. There have been various photochromic agents, such as polymer nanoparticles, quantum and carbon dots, and organic and inorganic fluorophores and luminophores, which have been broadly used for antiforging applications. In comparison to organic agents, inorganic photochromic materials have better stability under reversible/long-term light illumination. Recently, the remarkable optical characteristics and chemical stability of photoluminescent and photochromic agents have led to their extensive usage anticounterfeiting products. There have been also several strategies to tackle the rising problem of counterfeiting. Both of solvent-based and water-based inks have been developed for security encoding purposes. Additionally, the printing methods, including screen printing, labeling, stamping, inkjet printing, and handwriting, that have been used to apply anticounterfeiting inks onto various surfaces are discussed. The limitations of photoluminescent and photochromic agents and the potential for their future preparation to combat counterfeiting were discussed. This review would benefit academic researchers and industrial developers who are interested in the area of security printing.


Asunto(s)
Tinta , Impresión , Procesos Fotoquímicos , Polímeros/química , Luminiscencia
14.
J Mater Chem B ; 12(27): 6716-6723, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38899871

RESUMEN

Three-dimensional bioprinting is a potent biofabrication technique in tissue engineering but is limited by inadequate bioink availability. Plant-derived proteins are increasingly recognized as highly promising yet underutilized materials for biomedical product development and hold potential for use in bioink formulations. Herein, we report the development of a biocompatible plant protein bioink from pea protein isolate. Through pH shifting, ethanol precipitation, and lyophilization, the pea protein isolate (PPI) transformed from an insoluble to a soluble form. Next, it was modified with glycidyl methacrylate to obtain methacrylate-modified PPI (PPIGMA), which is photocurable and was used as the precursor of bioink. The mechanical and microstructural studies of the hydrogel containing 16% PPIGMA revealed a suitable compress modulus and a porous network with a pore size over 100 µm, which can facilitate nutrient and waste transportation. The PPIGMA bioink exhibited good 3D bioprinting performance in creating complex patterns and good biocompatibility as plenty of viable cells were observed in the printed samples after 3 days of incubation in the cell culture medium. No immunogenicity of the PPIGMA bioink was identified as no inflammation was observed for 4 weeks after implantation in Sprague Dawley rats. Compared with methacrylate-modified gelatin, the PPIGMA bioink significantly enhanced cartilage regeneration in vitro and in vivo, suggesting that it can be used in tissue engineering applications. In summary, the PPIGMA bioink can be potentially used for tissue engineering applications.


Asunto(s)
Materiales Biocompatibles , Bioimpresión , Impresión Tridimensional , Ingeniería de Tejidos , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ratas , Proteínas de Guisantes/química , Metacrilatos/química , Ratas Sprague-Dawley , Hidrogeles/química , Hidrogeles/farmacología , Tinta
15.
Int J Biol Macromol ; 271(Pt 2): 132611, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38797304

RESUMEN

There is a growing demand for engineered bone tissues custom-designed to match the patient-specific defect size and in vitro models for studying bone diseases and/or drug screening. Herein, we propose a bioprinted bone tissue construct using SaOs-2 cells within alginate/gellan gum/hydroxyapatite inks. Different ink formulations were developed with varying hydroxyapatite content and then evaluated for viscoelasticity, printability, biomineralization properties, post-printing viability, proliferation, metabolic activity, and osteogenic phenotype of SaOs-2-encapsulated cells. Results indicate that ink formulations exhibit non-Newtonian shear-thinning behaviour, maintaining shape integrity and structural stability post-printing. Ink mineralization rates increase with the hydroxyapatite content, rendering them suitable for bone defect strategies. Post-printed cells in the developed constructs remain live, spreading, and metabolically active but do not proliferate. Osteogenic gene and protein expression, both early and late, show upregulation at day 7 relative to day 1, followed by downregulation at day 14. Lower hydroxyapatite content inks demonstrate up to fourfold upregulation in genes and proteins at most time points. Additionally, these constructs release calcium and phosphate at levels conducive to mineralization. Overall, the tissue-engineered miniaturized constructs not only meet the criteria for early-stage bone defect/fracture regeneration but also serve as a promising platform for drug screening and evaluating potential therapeutic treatments.


Asunto(s)
Alginatos , Bioimpresión , Regeneración Ósea , Durapatita , Tinta , Osteogénesis , Polisacáridos Bacterianos , Ingeniería de Tejidos , Andamios del Tejido , Durapatita/química , Durapatita/farmacología , Alginatos/química , Alginatos/farmacología , Bioimpresión/métodos , Humanos , Osteogénesis/efectos de los fármacos , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/farmacología , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Huesos/efectos de los fármacos , Huesos/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
16.
Int J Biol Macromol ; 271(Pt 1): 132341, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821792

RESUMEN

To address the growing challenge of counterfeit prevention, this study developed a novel anti-counterfeiting ink system based on bacterial cellulose nanocrystals (BCNC) and lanthanide (Er, Yb)­nitrogen (N) co-dropped graphene quantum dots (GQDs), which exhibited both photoluminescence (PL) and upconversion photoluminescence (UCPL) fluorescent properties as well as excellent rheological characteristics. The Er/Yb/N-GQDs with positive charges were synthesized by a one-step hydrothermal method and subsequently assembled with negatively charged BCNC through electrostatic self-assembly to fabricate a novel nanohybrid, Er/Yb/N-GQDs-BCNC. Raman spectroscopy results indicated an enhancement in the graphitization of GQDs due to lanthanide modification. The TEM results demonstrated a homogeneous distribution of Er/Yb/N-GQDs on BCNC, while XRD, FTIR, and XPS analyses confirmed their physical binding, thus validating the successful synthesis of novel nanohybrids. Then, Er/Yb/N-GQDs-BCNC was introduced into PVA waterborne ink and exhibited dual anti-counterfeiting properties by emitting blue fluorescence at Em 440 nm under Ex 370 nm and green fluorescence at Em 550 nm under Ex 980 nm. Furthermore, the incorporation of BCNC significantly enhanced the thixotropic behavior and yield stress of the PVA waterborne ink. This enhancement made the dual anti-counterfeiting fluorescent ink more suitable for diversified applications on different devices and various substrates, thus providing a novel approach for convenient and rapid information encryption and high security anti-counterfeiting.


Asunto(s)
Celulosa , Grafito , Tinta , Elementos de la Serie de los Lantanoides , Nanopartículas , Nitrógeno , Puntos Cuánticos , Celulosa/química , Nanopartículas/química , Puntos Cuánticos/química , Nitrógeno/química , Grafito/química , Elementos de la Serie de los Lantanoides/química , Agua/química , Luminiscencia , Bacterias
17.
Biofabrication ; 16(3)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38776895

RESUMEN

Silk fibroin (SF) is a natural protein extracted fromBombyx morisilkworm thread. From its common use in the textile industry, it emerged as a biomaterial with promising biochemical and mechanical properties for applications in the field of tissue engineering and regenerative medicine. In this study, we evaluate for the first time the effects of SF on cardiac bioink formulations containing cardiac spheroids (CSs). First, we evaluate if the SF addition plays a role in the structural and elastic properties of hydrogels containing alginate (Alg) and gelatin (Gel). Then, we test the printability and durability of bioprinted SF-containing hydrogels. Finally, we evaluate whether the addition of SF controls cell viability and function of CSs in Alg-Gel hydrogels. Our findings show that the addition of 1% (w/v) SF to Alg-Gel hydrogels makes them more elastic without affecting cell viability. However, fractional shortening (FS%) of CSs in SF-Alg-Gel hydrogels increases without affecting their contraction frequency, suggesting an improvement in contractile function in the 3D cultures. Altogether, our findings support a promising pathway to bioengineer bioinks containing SF for cardiac applications, with the ability to control mechanical and cellular features in cardiac bioinks.


Asunto(s)
Alginatos , Elasticidad , Fibroínas , Gelatina , Hidrogeles , Miocitos Cardíacos , Alginatos/química , Alginatos/farmacología , Fibroínas/química , Fibroínas/farmacología , Gelatina/química , Hidrogeles/química , Hidrogeles/farmacología , Animales , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Bioimpresión , Supervivencia Celular/efectos de los fármacos , Ingeniería de Tejidos , Tinta , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacos , Ratas , Contracción Miocárdica/efectos de los fármacos
18.
J Mater Chem B ; 12(27): 6627-6642, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38752707

RESUMEN

The advent of three-dimensional (3D) bioprinting offers a feasible approach to construct complex structures for soft tissue regeneration. Carboxymethyl cellulose (CMC) has been emerging as a very promising biomaterial for 3D bioprinting. However, due to the inability to maintain the post-printed stability, CMC needs to be physically blended and/or chemically crosslinked with other polymers. In this context, this study presents the combination of CMC with xanthan gum (XG) and hyaluronic acid (HA) to formulate a multicomponent bioink, leveraging the printability of CMC and XG, as well as the cellular support properties of HA. The ionic crosslinking of printed constructs with iron(III) via the metal-ion coordination between ferric cations and carboxylate groups of the three polymers was introduced to induce improved mechanical strength and long-term stability. Moreover, immortalized human epidermal keratinocytes (HaCaT) and human foreskin fibroblasts (HFF) encapsulated within iron-crosslinked printed hydrogels exhibited excellent cell viability (more than 95%) and preserved morphology. Overall, the presented study highlights that the combination of these three biopolymers and the ionic crosslinking with ferric ions is a valuable strategy to be considered for the development of new and advanced hydrogel-based bioinks for soft tissue engineering applications.


Asunto(s)
Carboximetilcelulosa de Sodio , Ácido Hialurónico , Polisacáridos Bacterianos , Ingeniería de Tejidos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Polisacáridos Bacterianos/química , Carboximetilcelulosa de Sodio/química , Humanos , Reactivos de Enlaces Cruzados/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Supervivencia Celular/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/síntesis química , Hierro/química , Tinta , Fibroblastos/efectos de los fármacos , Fibroblastos/citología , Bioimpresión , Queratinocitos/efectos de los fármacos , Queratinocitos/citología
19.
Int J Pharm ; 659: 124277, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38802027

RESUMEN

The application of 3D printing technology in the delivery of macromolecules, such as proteins and enzymes, is limited by the lack of suitable inks. In this study, we report the development of novel inks for 3D printing of constructs containing proteins while maintaining the activity of the proteins during and after printing. Different ink formulations containing Pluronic F-127 (20-35 %, w/v), trehalose (2-10 %, w/v) or mannitol, poly (ethylene glycol) diacrylate (PEGDA) (0 or 10 %, w/w), and diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO, 0 or 0.2 mg/mL) were prepared for 3D-microextrusion printing. The F2 formulation that contained ß-galactosidase (ß-gal) as a model enzyme, Pluronic F-127 (30 %), and trehalose (10 %) demonstrated the desired viscosity, printability, and dose flexibility. The shear-thinning property of the F2 formulation enabled the printing of ß-gal containing constructs with a good peak force during extrusion. After 3D printing, the enzymatic activity of the ß-gal in the constructs was maintained for an extended period, depending on the construct design and storage conditions. For instance, there was a 50 % reduction in ß-gal activity in the two-layer constructs, but only a 20 % reduction in the four-layer construct (i.e., 54.5 ± 1.2 % and 82.7 ± 9.9 %, respectively), after 4 days of storage. The ß-gal activity in constructs printed from the F2 formulation was maintained for up to 20 days when stored in sealed bags at room temperatures (21 ± 2 °C), but not when stored unsealed in the same conditions (e.g., ∼60 % activity loss within 7 days). The ß-gal from constructs printed from F2 started to release within 5 min and reached 100 % after 20 min. With the design flexibility offered by the 3D printing, the ß-gal release from the constructs was delayed to 3 h by printing a backing layer of ß-gal-free F5 ink on the constructs printed from the F2 ink. Finally, ovalbumin as an alternative protein was also incorporated in similar ink compositions. Ovalbumin exhibited a release profile like that of the ß-gal, and the release can also be modified with different shape design and/or ink composition. In conclusion, ink formulations that possess desirable properties for 3D printing of protein-containing constructs while maintaining the protein activity during and after printing were developed.


Asunto(s)
Tinta , Poloxámero , Polietilenglicoles , Impresión Tridimensional , Trehalosa , beta-Galactosidasa , beta-Galactosidasa/química , Poloxámero/química , Polietilenglicoles/química , Trehalosa/química , Viscosidad , Excipientes/química , Sistemas de Liberación de Medicamentos/métodos , Manitol/química , Tecnología Farmacéutica/métodos , Fosfinas/química
20.
Biomacromolecules ; 25(6): 3741-3755, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38783486

RESUMEN

The development of efficient and biocompatible contrast agents is particularly urgent for modern clinical surgery. Nanostructured materials raised great interest as contrast agents for different imaging techniques, for which essential features are high contrasts, and in the case of precise clinical surgery, minimization of the signal spatial dispersion when embedded in biological tissues. This study deals with the development of a multimodal contrast agent based on an injectable hydrogel nanocomposite containing a lanthanide-activated layered double hydroxide coupled to a biocompatible dye (indocyanine green), emitting in the first biological window. This novel nanostructured thermogelling hydrogel behaves as an efficient tissue marker for optical and magnetic resonance imaging because the particular formulation strongly limits its spatial diffusion in biological tissue by exploiting a simple injection. The synergistic combination of these properties permits to employ the hydrogel ink simultaneously for both optical and magnetic resonance imaging, easy monitoring of the biological target, and, at the same time, increasing the spatial resolution during a clinical surgery. The biocompatibility and excellent performance as contrast agents are very promising for possible use in image-guided surgery, which is currently one of the most challenging topics in clinical research.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Animales , Humanos , Cirugía Asistida por Computador/métodos , Nanoestructuras/química , Hidrogeles/química , Tinta , Ratones , Verde de Indocianina/química , Verde de Indocianina/administración & dosificación , Materiales Biocompatibles/química , Imagen Óptica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...