Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.348
Filtrar
1.
Mikrochim Acta ; 191(7): 436, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38954059

RESUMEN

A fluorescence probe based on molecularly imprinted polymers on red emissive biomass-derived carbon dots (r-BCDs@MIPs) was developed to detect tyramine in fermented meat products. The red emissive biomass-derived carbon dots (r-BCDs) were synthesized by the one-step solvothermal method using discarded passion fruit shells as raw materials. The fluorescence emission peak of r-BCDs was at 670 nm, and the relative quantum yield (QY) was about 2.44%. Molecularly imprinted sensing materials were prepared with r-BCDs as fluorescent centers for the detection of trace tyramine, which showed a good linear response in the concentration range of tyramine from 1 to 40 µg L-1. The linear correlation coefficient was 0.9837, and the limit of detection was 0.77 µg L-1. The method was successfully applied to the determination of tyramine in fermented meat products, and the recovery was 87.17-106.02%. The reliability of the results was verified through high-performance liquid chromatography (HPLC). Furthermore, we combined the r-BCDs@MIPs with smartphone-assisted signal readout to achieve real-time detection of tyramine in real samples. Considering its simplicity and convenience, the method could be used as a rapid and low-cost promising platform with broad application prospects for on-site detection of trace tyramine with smartphone-assisted signal readout.


Asunto(s)
Carbono , Colorantes Fluorescentes , Límite de Detección , Productos de la Carne , Polímeros Impresos Molecularmente , Puntos Cuánticos , Teléfono Inteligente , Tiramina , Tiramina/análisis , Tiramina/química , Carbono/química , Puntos Cuánticos/química , Productos de la Carne/análisis , Colorantes Fluorescentes/química , Polímeros Impresos Molecularmente/química , Espectrometría de Fluorescencia/métodos , Biomasa , Fermentación
2.
Food Res Int ; 190: 114558, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945562

RESUMEN

Fermented beverages, including wine, can accumulate high concentrations of biogenic amines (BAs), which can pose potential health risks. BAs are produced by various yeasts and lactic acid bacteria (LAB) during winemaking. LAB are the main contributors to the formation of histamine and tyramine, the most toxic and food safety relevant biogenic amines. Numerous factors, ranging from agricultural and oenological practices to sanitation conditions, can contribute to the formation of BAs in wines. Moreover, organic and biodynamic wines impose limitations on the use of common food additives employed to control the proliferation of native and spoilage microorganisms during vinification and storage. To mitigate histamine production, commercial starter cultures incapable of synthesising histamine have been effectively utilised to reduce wine histamine content. Alternative fermentative microorganisms are currently under investigation to enhance the safety, quality, and typicity of wines, including indigenous LAB, non-Saccharomyces yeasts, and BAs degrading strains. Furthermore, exploration of extracts from BAs-degrading microorganisms and their purified enzymes has been undertaken to reduce BAs levels in wines. This review highlights microbial contributors to BAs in wines, factors affecting their growth and BA production, and alternative microorganisms that can degrade or avoid BAs. The aim is to lessen reliance on additives, providing consumers with safer wine choices.


Asunto(s)
Aminas Biogénicas , Fermentación , Vino , Levaduras , Vino/análisis , Vino/microbiología , Aminas Biogénicas/análisis , Levaduras/metabolismo , Microbiología de Alimentos , Histamina/análisis , Histamina/metabolismo , Tiramina/análisis , Lactobacillales/metabolismo
3.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892132

RESUMEN

The use of secondary metabolites of rice to control pests has become a research hotspot, but little is known about the mechanism of rice self-resistance. In this study, metabolomics analysis was performed on two groups of rice (T1, with insect pests; T2, without pests), indicating that fatty acids, alkaloids, and phenolic acids were significantly up-regulated in T1. The up-regulated metabolites (p-value < 0.1) were enriched in linoleic acid metabolism, terpene, piperidine, and pyridine alkaloid biosynthesis, α-linolenic acid metabolism, and tryptophan metabolism. Six significantly up-regulated differential metabolites in T1 were screened out: N-trans-feruloyl-3-methoxytyramine (1), N-trans-feruloyltyramine (2), N-trans-p-coumaroyltyramine (3), N-cis-feruloyltyramine (4), N-phenylacetyl-L-glutamine (5), and benzamide (6). The insect growth inhibitory activities of these six different metabolites were determined, and the results show that compound 1 had the highest activity, which significantly inhibited the growth of Chilo suppressalis by 59.63%. Compounds 2-4 also showed a good inhibitory effect on the growth of Chilo suppressalis, while the other compounds had no significant effect. RNA-seq analyses showed that larval exposure to compound 1 up-regulated the genes that were significantly enriched in ribosome biogenesis in eukaryotes, the cell cycle, ribosomes, and other pathways. The down-regulated genes were significantly enriched in metabolic pathways, oxidative phosphorylation, the citrate cycle (TCA cycle), and other pathways. Eighteen up-regulated genes and fifteen down-regulated genes from the above significantly enriched pathways were screened out and verified by real-time quantitative PCR. The activities of detoxification enzymes (glutathione S-transferase (GST); UDP-glucuronosyltransferase (UGT); and carboxylesterase (CarE)) under larval exposure to compound 1 were measured, which indicated that the activity of GST was significantly inhibited by compound 1, while the activities of the UGT and CarE enzymes did not significantly change. As determined by UPLC-MS, the contents of compound 1 in the T1 and T2 groups were 8.55 ng/g and 0.53 ng/g, respectively, which indicated that pest insects significantly induced the synthesis of compound 1. Compound 1 may enhance rice insect resistance by inhibiting the detoxification enzyme activity and metabolism of Chilo suppressalis, as well as promoting cell proliferation to affect its normal growth and development process. The chemical-ecological mechanism of the insect resistance of rice is preliminarily clarified in this paper.


Asunto(s)
Metabolómica , Oryza , Oryza/metabolismo , Oryza/genética , Oryza/parasitología , Animales , Metabolómica/métodos , Alcaloides/metabolismo , Alcaloides/farmacología , Regulación de la Expresión Génica de las Plantas , Metaboloma , Herbivoria , Ácidos Cumáricos , Tiramina/análogos & derivados
4.
Food Res Int ; 188: 114501, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823874

RESUMEN

This study investigated the effects of different pickle brines and glycine additions on biogenic amine formation in pickle fermentation. The results showed that the brines with higher biogenic amine content led to the production of more biogenic amines in the simulated pickle fermentation system. This was related to the abundance of biogenic amine-producing microorganisms in the microbial communities of the brines. Metagenome analysis of the brines and metatranscriptome analysis of the fermentation systems showed that putrescine was primarily from Lactobacillus, Oenococcus, and Pichia, while histamine and tyramine were primarily from Lactobacillus and Tetragenococcus. Addition of glycine significantly reduced the accumulation of biogenic amines in the simulated pickle fermentation system by as much as 70 %. The addition of glycine had no inhibitory effect on the amine-producing microorganisms, but it down-regulated the transcription levels of the genes for enzymes related to putrescine synthesis in Pichia, Lactobacillus, and Oenococcus, as well as the histidine decarboxylase genes in Lactobacillus and Tetragenococcus. Catalytic reaction assay using crude solutions of amino acid decarboxylase extracted from Lactobacillus brevis showed that the addition of glycine inhibited 45 %-55 % of ornithine decarboxylase and tyrosine decarboxylase activities. This study may provide a reference for the study and control of the mechanism of biogenic amine formation in pickle fermentation.


Asunto(s)
Aminas Biogénicas , Fermentación , Glicina , Glicina/metabolismo , Aminas Biogénicas/metabolismo , Sales (Química) , Putrescina/metabolismo , Tiramina/metabolismo , Microbiología de Alimentos , Lactobacillus/metabolismo , Lactobacillus/genética , Alimentos Fermentados/microbiología , Pichia/metabolismo , Pichia/genética
5.
Int J Biol Macromol ; 271(Pt 2): 132527, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777027

RESUMEN

Wound infections, posing a grave risk of severe physical consequences and even mortality, exact a substantial financial toll on society, rendering them among the most formidable challenges confronting our world today. A critical imperative is the development of hydrogel dressings endowed with immune-regulating and antibacterial properties. This study is founded upon the symbiotic physical and efficacious attributes of two small natural molecules. An injectable hydrogel is meticulously crafted by encapsulating puerarin (PUE) into tyramine-modified hyaluronic acid, subsequently introducing rhein (RHE), and catalyzing the formation of inter-phenol crosslinks with H2O2/horseradish peroxidase (HA-Tyr-R@P). Exhibiting a favorable microenvironmental impact the developed hydrogel attains an antibacterial efficacy exceeding 95 %, coupled with a wound closure rate twice that of the control group. HA-Tyr-R@P hydrogels not only inhibit bacterial growth but also mitigate inflammation, fostering wound healing, owing to their harmonized physicochemical characteristics and synergistic therapeutic effects. This work underscores the creation of a singular, versatile hydrogel platform, negating the complexities and side effects associated with pharmaceutical preparations. Furthermore, it offers new ideas for the formulation of RHE-based hydrogels for wound healing, emphasizing the pivotal role of natural small molecules in advancing biological materials.


Asunto(s)
Antraquinonas , Antibacterianos , Antiinflamatorios , Ácido Hialurónico , Hidrogeles , Isoflavonas , Tiramina , Cicatrización de Heridas , Tiramina/química , Tiramina/farmacología , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Animales , Isoflavonas/química , Isoflavonas/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/química , Cicatrización de Heridas/efectos de los fármacos , Ratones , Antraquinonas/química , Antraquinonas/farmacología , Vendajes
6.
Food Chem ; 454: 139759, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805926

RESUMEN

A ratiometric fluorescence molecularly imprinted probe employing two distinct emission wavelengths of biomass carbon dots was developed for highly selective and visual quantitative detection of tyramine in fermented meat products. The red emission biomass carbon dots were employed as responsive elements, and the blue ones were utilized as the reference elements. The molecularly imprinted polymers were incorporated in the ratiometric sensing to distinguish and adsorb tyramine. With the linear range of 1-60 µg/L, the ratiometric fluorescence molecularly imprinted probe was successfully applied to detect tyramine in real samples with the satisfactory recoveries of 79.74-112.12% and the detect limitation of 1.3 µg/kg, indicating that this probe has great potential applications for the detection of tyramine in real samples. Moreover, smartphone-based fluorescence signal recognition analysis on hand has been developed for the quantitative analysis of tyramine, providing a portable visual optical analysis terminal for rapid on-site determination of tyramine.


Asunto(s)
Carbono , Productos de la Carne , Impresión Molecular , Teléfono Inteligente , Tiramina , Tiramina/análisis , Carbono/química , Productos de la Carne/análisis , Contaminación de Alimentos/análisis , Puntos Cuánticos/química , Biomasa , Fluorescencia , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Animales
7.
ACS Synth Biol ; 13(6): 1762-1772, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38815614

RESUMEN

In this study, we designed an artificial pathway composed of tyramine ß-hydroxylase (TBH) and phenylethanolamine N-methyltransferase (PNMT) for the biosynthesis of both octopamine and synephrine. As most TBH and PNMT originate from eukaryotic animals and plants, the heterologous expression and identification of functional TBH and PNMT are critical for establishing the pathway in mode microorganisms like Escherichia coli. Here, three TBHs were evaluated, and only TBH from Drosophila melanogaster was successfully expressed in the soluble form in E. coli. Its expression was promoted by evaluating the effects of different expression strategies. The specific enzyme activity of TBH was optimized up to 229.50 U·g-1, and the first step in the biosynthetic pathway was successfully established and converted tyramine to synthesize 0.10 g/L of octopamine. Furthermore, the second step to produce synephrine from octopamine was developed by screening PNMT, enhancing enzyme activity, and optimizing reaction conditions, with a maximum synephrine production of 2.02 g/L. Finally, based on the optimization of the reaction conditions for each individual reaction, the one-pot cascade reaction for synthesizing synephrine from tyramine was constructed by combining the TBH and PNMT. The synthetic synephrine reached 30.05 mg/L with tyramine as substrate in the two-step enzyme cascade system. With further optimization and amplification, the titers of octopamine and synephrine were increased to 0.45 and 0.20 g/L, respectively, with tyramine as substrate. This work was the first achievement of the biosynthesis of octopamine and synephrine to date.


Asunto(s)
Drosophila melanogaster , Escherichia coli , Oxigenasas de Función Mixta , Octopamina , Feniletanolamina N-Metiltransferasa , Sinefrina , Octopamina/metabolismo , Sinefrina/metabolismo , Animales , Drosophila melanogaster/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Feniletanolamina N-Metiltransferasa/metabolismo , Feniletanolamina N-Metiltransferasa/genética , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/genética , Tiramina/metabolismo , Tiramina/biosíntesis , Vías Biosintéticas , Ingeniería Metabólica/métodos
8.
Cell Host Microbe ; 32(6): 950-963.e8, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38788722

RESUMEN

Inflammatory bowel disease (IBD) is characterized by dysbiosis of the gut microbiota and dysfunction of intestinal stem cells (ISCs). However, the direct interactions between IBD microbial factors and ISCs are undescribed. Here, we identify α2A-adrenergic receptor (ADRA2A) as a highly expressed GPCR in ISCs. Through PRESTO-Tango screening, we demonstrate that tyramine, primarily produced by Enterococcus via tyrosine decarboxylase (tyrDC), serves as a microbial ligand for ADRA2A. Using an engineered tyrDC-deficient Enterococcus faecalis strain and intestinal epithelial cell-specific Adra2a knockout mice, we show that Enterococcus-derived tyramine suppresses ISC proliferation, thereby impairing epithelial regeneration and exacerbating DSS-induced colitis through ADRA2A. Importantly, blocking the axis with an ADRA2A antagonist, yohimbine, disrupts tyramine-mediated suppression on ISCs and alleviates colitis. Our findings highlight a microbial ligand-GPCR pair in ISCs, revealing a causal link between microbial regulation of ISCs and colitis exacerbation and yielding a targeted therapeutic approach to restore ISC function in colitis.


Asunto(s)
Colitis , Ratones Noqueados , Receptores Adrenérgicos alfa 2 , Células Madre , Tiramina , Animales , Tiramina/metabolismo , Tiramina/farmacología , Colitis/microbiología , Colitis/inducido químicamente , Colitis/metabolismo , Ratones , Receptores Adrenérgicos alfa 2/metabolismo , Células Madre/metabolismo , Humanos , Ratones Endogámicos C57BL , Tirosina Descarboxilasa/metabolismo , Enterococcus faecalis/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Yohimbina/farmacología , Modelos Animales de Enfermedad , Enterococcus/metabolismo , Intestinos/microbiología , Intestinos/patología , Proliferación Celular , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/metabolismo , Sulfato de Dextran
9.
Gut Microbes ; 16(1): 2351620, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38738766

RESUMEN

Gut microbiota plays an essential role in nonalcoholic fatty liver disease (NAFLD). However, the contribution of individual bacterial strains and their metabolites to childhood NAFLD pathogenesis remains poorly understood. Herein, the critical bacteria in children with obesity accompanied by NAFLD were identified by microbiome analysis. Bacteria abundant in the NAFLD group were systematically assessed for their lipogenic effects. The underlying mechanisms and microbial-derived metabolites in NAFLD pathogenesis were investigated using multi-omics and LC-MS/MS analysis. The roles of the crucial metabolite in NAFLD were validated in vitro and in vivo as well as in an additional cohort. The results showed that Enterococcus spp. was enriched in children with obesity and NAFLD. The patient-derived Enterococcus faecium B6 (E. faecium B6) significantly contributed to NAFLD symptoms in mice. E. faecium B6 produced a crucial bioactive metabolite, tyramine, which probably activated PPAR-γ, leading to lipid accumulation, inflammation, and fibrosis in the liver. Moreover, these findings were successfully validated in an additional cohort. This pioneering study elucidated the important functions of cultivated E. faecium B6 and its bioactive metabolite (tyramine) in exacerbating NAFLD. These findings advance the comprehensive understanding of NAFLD pathogenesis and provide new insights for the development of microbe/metabolite-based therapeutic strategies.


Asunto(s)
Enterococcus faecium , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Tiramina , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Humanos , Enterococcus faecium/metabolismo , Ratones , Niño , Tiramina/metabolismo , Masculino , Femenino , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/microbiología , Obesidad Infantil/microbiología , Obesidad Infantil/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación
10.
Biosens Bioelectron ; 255: 116270, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588628

RESUMEN

Hepatocellular carcinoma (HCC), as one of the most lethal cancers, significantly impacts human health. Attempts in this area tends to develop novel technologies with sensitive and multiplexed detection properties for early diagnosis. Here, we present novel hydrogel photonic crystal (PhC) barcodes with tyramine deposition amplified enzyme-linked immunosorbent assay (ELISA) for highly sensitive and multiplexed HCC biomarker screening. Because of the abundant amino groups of acrylic acid (AA) component, the constructed hydrogel PhC barcodes with inverse opal structure could facilitate the loading of antibody probes for subsequent detection of tumor markers. By integrating tyramine deposition amplified ELISA on the barcode, the detection signal of tumor markers has been enhanced. Based on these features, it is demonstrated that the hydrogel PhC barcodes with tyramine deposition amplified ELISA could realize highly sensitive and multiplexed detection of HCC-related biomarkers. It was found that this method is flexible, sensitive and accurate, suitable for multivariate analysis of low abundance tumor markers and future cancer diagnosis. These features make the newly developed PhC barcodes an innovation platform, which possesses tremendous potential for practical application of low abundance targets.


Asunto(s)
Técnicas Biosensibles , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Hidrogeles/química , Carcinoma Hepatocelular/diagnóstico , Técnicas Biosensibles/métodos , Neoplasias Hepáticas/diagnóstico , Biomarcadores de Tumor , Ensayo de Inmunoadsorción Enzimática , Tiramina
11.
Biofabrication ; 16(3)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38604157

RESUMEN

Scaffolds play a pivotal role in tissue engineering and serve as vital biological substitutes, providing structural support for cell adhesion and subsequent tissue development. An ideal scaffold must possess mechanical properties suitable for tissue function and exhibit biodegradability. Although synthetic polymer scaffolds offer high rigidity and elasticity owing to their reactive side groups, which facilitate tailored mechanical and rheological properties, they may lack biological cues and cause persistent side effects during degradation. To address these challenges, natural polymers have garnered attention owing to their inherent bioactivity and biocompatibility. However, natural polymers such as silk fibroin (SF) and tyramine-modified alginate (AT) have limitations, including uncontrolled mechanical properties and weak structural integrity. In this study, we developed a blend of SF and AT as a printable biomaterial for extrusion-based 3D printing. Using photocrosslinkable SF/AT inks facilitated the fabrication of complex scaffolds with high printability, thereby enhancing their structural stability. The incorporation of silver nitrate facilitated the tunability of mechanical and rheological behaviors. SF/AT scaffolds with varying stiffness in the physiologically relevant range for soft tissues (51-246 kPa) exhibited excellent biocompatibility, indicating their promising potential for diverse applications in tissue engineering.


Asunto(s)
Alginatos , Fibroínas , Impresión Tridimensional , Nitrato de Plata , Andamios del Tejido , Fibroínas/química , Alginatos/química , Andamios del Tejido/química , Nitrato de Plata/química , Animales , Reactivos de Enlaces Cruzados/química , Ingeniería de Tejidos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Reología , Humanos , Ratones , Procesos Fotoquímicos , Tiramina/química
12.
J Vet Med Sci ; 86(5): 463-467, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38508725

RESUMEN

Tyramine, a trace monoamine produced from tyrosine by decarboxylation and found naturally in foods, plants, and animals, is a suspected virulence factor of Melissococcus plutonius that causes European foulbrood in honey bee brood. In the present study, we developed a method for quantitative analysis of tyramine in culture medium and honey bee larvae with a limit of quantitation of 3 ng/mL and a recovery rate of >97% using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry and deuterium-labeled tyramine, demonstrating for the first time that a highly virulent M. plutonius strain actually produces tyramine in infected larvae. This method will be an indispensable tool to elucidate the role of tyramine in European foulbrood pathogenesis in combination with exposure bioassays using artificially reared bee larvae.


Asunto(s)
Enterococcaceae , Larva , Tiramina , Animales , Larva/microbiología , Abejas/microbiología , Tiramina/análisis , Enterococcaceae/aislamiento & purificación , Cromatografía Liquida/veterinaria , Espectrometría de Masas en Tándem/veterinaria
13.
J Anal Toxicol ; 48(5): 393-397, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38502107

RESUMEN

An unidentified compound in putrefied postmortem blood samples showed identical accurate mass and chromatographic behavior as 3,4-methylenedioxyamphetamine (MDA) and led to false-positive preliminary screening results. The aim of the study was to identify this unknown interference. Postmortem blood samples were analyzed after protein precipitation on a QExactive Focus high-resolution mass spectrometer (Thermo Fisher, Germany) coupled to a RP C18 column (Macherey-Nagel, Germany). Based on the analysis of mass spectrometry (MS) adducts and isotope ratios using fullscan (m/z 134-330) information, the empiric formula of the protonated molecule [M + H]+ of the unknown compound was found to be C10H14O2N (+ 0.6 ppm). Product ion spectra recorded using normalized collision energy 22% showed a base peak of C8H9O1 (+ 1.5 ppm) and a low-abundant water loss to C7H9 (+ 1.9 ppm), neutral losses of C2H2O and NH3 were found. Based on fullscan and MS-MS information and under consideration of the observed order of neutral losses, the compound was presumptively identified as N-acetyltyramine. This assumption was supported by SIRIUS software showing a SIRIUS score of 99.43% for N-acetyltyramine. Finally, the putative structure annotation was confirmed by a reference compound. The described false-positive MDA findings could be attributed to the presence of N-acetyltyramine in putrefied blood samples. Being an isomer of MDA, N-acetyltyramine could not be distinguished by high-resolution data of the protonated molecules. The presented results once again highlight that false-positive findings may occur even in hyphenated high-resolution mass spectrometry (HRMS) when using full-scan information only.


Asunto(s)
Detección de Abuso de Sustancias , Humanos , Reacciones Falso Positivas , Detección de Abuso de Sustancias/métodos , Toxicología Forense/métodos , Tiramina/sangre , Espectrometría de Masas en Tándem , Espectrometría de Masas , Autopsia , N-Metil-3,4-metilenodioxianfetamina/sangre
14.
Anal Chim Acta ; 1298: 342415, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38462342

RESUMEN

BACKGROUND: Tyramine is an important index of food freshness degree, and tyrosinase that can specifically oxidized monophenolamine to catecholamine plays a crucial part in the occurrence and development of melanin-related skin diseases. Therefore, it is crucial to develop sensitive and efficient methods for the detection of tyramine and tyrosinase. RESULTS: In this work, encouraged by tyrosinase-triggered specific oxidation of tyramine to dopamine and the unique fluorescent reaction between dopamine and amino silane, we have developed a one-step synthetic strategy of silicon containing nanoparticles (Si CNPs) for "turn-on" detection of tyramine and tyrosinase. The Si CNPs formed with thoroughly studied mechanism exhibit uniform structure and robust yellow-green fluorescence. The low detection limits for tyramine (1.87 µM) and tyrosinase (0.0029 U/mL) demonstrate admirable sensitivity outstripping most methods. The proposed assay achieves satisfactory results in the determination of tyramine and tyrosinase activity in real samples. Furthermore, we leverage this new fluorescent assay to enable the fabrication of an "AND" Boolean logic gate. SIGNIFICANCE: The entire process can be completed at easily available temperature and pressure with rapid response, convenient operation and visual observation. This fluorescent assay featured with excellent sensitivity, selectivity and stability has considerable prospects in the application of biosensors and disease diagnosis.


Asunto(s)
Monofenol Monooxigenasa , Nanopartículas , Monofenol Monooxigenasa/química , Dopamina/química , Silicio , Tiramina , Nanopartículas/química
15.
J Antimicrob Chemother ; 79(3): 617-631, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38297992

RESUMEN

BACKGROUND: The ability of dermatophytes to develop biofilms in host tissues confers physical and biochemical resistance to antifungal drugs. Therefore, research to find new compounds against dermatophyte biofilm is crucial. OBJECTIVES: To evaluate the antifungal activity of riparin II (RIP2), nor-riparin II (NOR2) and dinor-riparin II (DINOR2) against Trichophyton rubrum, Microsporum canis and Nannizzia gypsea strains. METHODS: Initially, we determined the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of benzamides. We evaluated the inhibitory effects on the development of dermatophyte biofilms using in vitro and ex vivo models. Finally, we built three-dimensional models of the sulphite pump Ssu1 to investigate the interactions with the benzamides by molecular docking. RESULTS: RIP2 showed a broad spectrum of activity against T. rubrum, M. canis and N. gypsea, whereas NOR2 and DINOR2 were more selective. Furthermore, the shortening of the carbon chain from RIP2 benzamide to NOR2 and DINOR2 homologs caused a decrease in the MIC values. The benzamides reduced biofilm production and viability in vitro (P < 0.05) at MIC. This result was similar ex vivo in human nail fragments tests, but NOR2 and DINOR2 showed significant results at 2xMIC (P < 0.05). We constructed a model of the Ssu1 protein for each dermatophyte with high similarity. Molecular docking showed that the benzamides obtained higher binding energy values than ciclopirox. CONCLUSIONS: Our study shows the antibiofilm potential for riparin II-type benzamides as new drugs targeting dermatophytes by inhibiting the Ssu1 protein.


Asunto(s)
Antifúngicos , Arthrodermataceae , Tiramina/análogos & derivados , Humanos , Antifúngicos/farmacología , Simulación del Acoplamiento Molecular , Benzamidas/farmacología , Biopelículas
16.
Talanta ; 272: 125777, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364565

RESUMEN

Tyramine signal amplification (TSA) has made its mark in immunoassay due to its excellent signal amplification ability and short reaction time, but its application in nucleic acid detection is still very limited. Herein, an ultrasensitive microRNA (miRNA) biosensor by coupling hybridization-initiated exonuclease I (Exo I) protection and TSA strategy was established. Target miRNA is complementarily hybridized to the biotin-modified DNA probe to form a double strand, which protects the DNA probe from Exo I hydrolysis. Subsequently, horseradish peroxidase (HRP) is attached to the duplex via the biotin-streptavidin reaction and catalyzes the deposition of large amounts of biotin-tyramine in the presence of hydrogen peroxide (H2O2), followed by the conjugation of signal molecule streptavidin-phycoerythrin (SA-PE), which generates an intense fluorescence signal upon laser excitation. This method gave broad linearity in the range of 0.1 fM - 10 pM, yielding a detection limit as low as 74 aM. An increase in sensitivity of 4 orders of magnitude was observed compared to the miRNA detection without TSA amplification. This biosensor was successfully applied to the determination of miR-21 in breast cancer cells and human serum. By further design of specific DNA probes and coupling with the Luminex xMAP technology, it could be easily extended to multiplex miRNA assay, which possesses great application potential in clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Exodesoxirribonucleasas , MicroARNs , Humanos , MicroARNs/genética , Biotina , Estreptavidina , Peróxido de Hidrógeno , Técnicas Biosensibles/métodos , Sondas de ADN/genética , Tiramina , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico/métodos
17.
mSystems ; 9(3): e0102723, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38421203

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a major public health problem due to the high incidence affecting approximately one-third of the world's population. NAFLD is usually linked to obesity and excessive weight. A subset of patients with NAFLD expresses normal or low body mass index; thus, the condition is called non-obese NAFLD or lean NAFLD. However, patients and healthcare professionals have little awareness and understanding of NAFLD in non-obese individuals. Furthermore, preclinical results from non-obese animal models with NAFLD are unclear. Gut microbiota and their metabolites in non-obese/lean-NAFLD patients differ from those in obese NAFLD patients. Therefore, we analyzed the biochemical indices, intestinal flora, and intestinal metabolites in a non-obese NAFLD mouse model established using a methionine-choline-deficient (MCD) diet. The significantly lean MCD mice had a remarkable fatty liver with lower serum triglyceride and free fatty acid levels, as well as higher alanine transaminase and aspartate transaminase levels than normal mice. 16S RNA sequencing of fecal DNA showed that the overall richness and diversity of the intestinal flora decreased in MCD mice, whereas the Firmicutes:Bacteroidota ratio was increased. g_Tuzzerella, s_Bifidobacterium pseudolongum, and s_Faecalibaculum rodentium were the predominant species in non-obese NAFLD mice. Fecal metabolomics using liquid chromatography-tandem mass spectrometry revealed the potential biomarkers for the prognosis and diagnosis of non-obese NAFLD, including high levels of tyramine glucuronide, 9,12,13-TriHOME, and pantetheine 4'-phosphate, and low levels of 3-carbamoyl-2-phenylpropionaldehyde, N-succinyl-L,L-2,6-diaminopimelate, 4-methyl-5-thiazoleethanol, homogentisic acid, and estriol. Our findings could be useful to identify and develop drugs to treat non-obese NAFLD and lean NAFLD. IMPORTANCE: Patients and healthcare professionals have little awareness and understanding of NAFLD in non-obese individuals. In fact, about 40% of people with NAFLD worldwide are non-obese, and nearly one-fifth are lean. Lean NAFLD unfortunately may be unnoticed for years and remains undetected until hepatic damage is advanced and the prognosis is compromised. This study focused on the lean NAFLD, screened therapeutic agents, and biomarkers for the prognosis and diagnosis using MCD-induced male C57BL/6J mice. The metabolites tyramine glucuronide, 9,12,13-TriHOME, and pantetheine 4'-phosphate, together with the predominant flora including g_Tuzzerella, s_Bifidobacterium pseudolongum, and s_Faecalibaculum rodentium, were specific in non-obese NAFLD mice and might be used as targets for non-obese NAFLD drug exploration. This study is particularly significant for non-obese NAFLDs that need to be more actively noticed and vigilant.


Asunto(s)
Bifidobacterium , Firmicutes , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Panteteína/análogos & derivados , Tiramina/análogos & derivados , Humanos , Animales , Ratones , Masculino , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Microbioma Gastrointestinal/genética , Ratones Endogámicos C57BL , Obesidad/complicaciones , Biomarcadores , Colina , Fosfatos
18.
Carbohydr Polym ; 327: 121635, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171654

RESUMEN

The migration of fibroblasts and endothelial cells is a critical determinant of wound-healing outcomes for skin injuries. Here, hyaluronic acid-tyramine (HAT) and thiolated glycol chitosan (TGC) conjugates were combined with copper-doped bioglass (ACuBG) nanoparticles to build a novel type of multi-crosslinked hydrogel for stimulating the migration of cells, and thus, expediting wound healing. The optimally devised HAT/TGC/ACuBG gels had markedly improved strength and stiffness compared to the gels built from either HAT or TGC while showing sufficient elasticity, which contributes to stimulating the migration of fibroblasts. The sustainable release of silicon and copper ions from the gels was found to jointly induce the migration of human umbilical vein endothelial cells. The results based on mouse full-thickness skin defects demonstrated that they were able to fully restore the skin defects with formation of complete appendages within two weeks, suggesting their promising potency for use in expediting wound healing.


Asunto(s)
Quitosano , Nanopartículas , Ratones , Animales , Humanos , Hidrogeles/farmacología , Cobre/farmacología , Ácido Hialurónico , Células Endoteliales , Tiramina/farmacología , Cicatrización de Heridas
19.
Anal Chem ; 96(4): 1789-1794, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38230634

RESUMEN

Highly sensitive and facile detection of low levels of protein markers is of great significance for the early diagnosis and efficacy monitoring of diseases. Herein, aided by an efficient tyramine-signal amplification (TSA) mechanism, we wish to report a simple but ultrasensitive immunoassay with signal readout on a portable personal glucose meter (PGM). In this study, the bioconjugates of tyramine and invertase (Tyr-inv), which act as the critical bridge to convert and amplify the protein concentration information into glucose, are prepared following a click chemistry reaction. Then, in the presence of a target protein, the sandwich immunoreaction between the immobilized capture antibody, the target protein, and the horseradish peroxidase (HRP)-conjugated detection antibody is specifically performed in a 96-well microplate. Subsequently, the specifically loaded HRP-conjugated detection antibodies will catalyze the amplified deposition of a large number of Tyr-inv molecules onto adjacent proteins through highly efficient TSA. Then, the deposited invertase, whose dosage can faithfully reflect the original concentration of the target protein, can efficiently convert sucrose to glucose. The amount of finally produced glucose is simply quantified by the PGM, realizing the highly sensitive detection of trace protein markers such as the carcinoembryonic antigen and alpha fetoprotein antigen at the fg/mL level. This method is simple, cost-effective, and ultrasensitive without the requirement of sophisticated instruments or specialized laboratory equipment, which may provide a universal and promising technology for highly sensitive immunoassay for in vitro diagnosis of diseases.


Asunto(s)
Técnicas Biosensibles , Glucosa , beta-Fructofuranosidasa/química , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Anticuerpos , Peroxidasa de Rábano Silvestre/química , Tiramina/química , Oro/química
20.
Yakugaku Zasshi ; 144(2): 197-202, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38296497

RESUMEN

My research focused on the effects of various drugs on (1) dopamine formation from p-tyramine catalyzed by polymorphic cytochrome P450 (CYP or P450) 2D6 variants and (2) endogenous steroid hormone hydroxylation catalyzed by CYP3A subfamily members (CYP3A4, CYP3A5, CYP3A7). The activation (cooperativity) of metabolic reactions catalyzed by P450s was especially emphasized. The effects of various psychotropic agents on dopamine formation from p-tyramine, catalyzed by wild-type CYP2D6.1 and CYP2D6 variants, including CYP2D6.2 (Arg296Cys;Ser486Thr), CYP2D6.10 (Pro34Ser;Ser486Thr), and CYP2D6.39 (Ser486Thr) were compared. Michaelis (Km) and inhibition (Ki) constants of the psychotropic agents in the presence of CYP2D6.10 were higher than those observed in the presence of other CYP2D6 variants. Fluvoxamine, fluoxetine, milnacipran, and haloperidol activated CYP2D6-catalyzed dopamine formation [decreasing the Km and/or increasing the maximal velocity (kcat)], and this activation was CYP2D6 variant-dependent. Regarding the CYP3A subfamily, the effects of various compounds including endogenous steroid hormones on the 6ß-hydroxylation of steroid hormones, such as testosterone, progesterone, and cortisol, were determined; it was found that testosterone, dehydroepiandrosterone, and/or α-naphthoflavone activated 6ß-hydroxylation of cortisol and/or progesterone, but the effects varied in the presence of different CYP3A subfamily members. Further studies are required to confirm the mechanisms and therapeutic relevance of these activation phenomena.


Asunto(s)
Citocromo P-450 CYP2D6 , Progesterona , Humanos , Citocromo P-450 CYP2D6/metabolismo , Progesterona/metabolismo , Citocromo P-450 CYP3A/metabolismo , Hidrocortisona/metabolismo , Dopamina/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Esteroides/metabolismo , Hidroxilación , Tiramina/metabolismo , Testosterona/metabolismo , Catálisis , Microsomas Hepáticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...