Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.945
Filtrar
1.
Biochem Biophys Res Commun ; 722: 150160, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38795453

RESUMEN

Carbene transfer reactions have emerged as pivotal methodologies for the synthesis of complex molecular architectures. Heme protein-catalyzed carbene transfer reactions have shown promising results on model compounds. However, their limited substrate scope has hindered their application in natural product functionalization. Building upon the foundation of previously published work on a carbene transferase-myoglobin variant, this study employs computer-aided protein engineering to design myoglobin variants, using either docking or the deep learning-based LigandMPNN method. These variants were utilized as catalysts in carbene transfer reactions with a selection of monoterpene substrates featuring C-C double bonds, leading to seven target products. This cost-effective methodology broadens the substrate scope for heme protein-catalyzed reactions, thereby opening novel pathways for research in heme protein functionalities and offering fresh perspectives in the synthesis of bioactive molecules.


Asunto(s)
Metano , Monoterpenos , Mioglobina , Mioglobina/química , Metano/química , Metano/análogos & derivados , Monoterpenos/química , Monoterpenos/metabolismo , Ingeniería de Proteínas/métodos , Transferasas/química , Transferasas/metabolismo , Simulación del Acoplamiento Molecular
2.
Ann Clin Transl Neurol ; 11(6): 1615-1629, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750253

RESUMEN

OBJECTIVE: COASY, the gene encoding the bifunctional enzyme CoA synthase, which catalyzes the last two reactions of cellular de novo coenzyme A (CoA) biosynthesis, has been linked to two exceedingly rare autosomal recessive disorders, such as COASY protein-associated neurodegeneration (CoPAN), a form of neurodegeneration with brain iron accumulation (NBIA), and pontocerebellar hypoplasia type 12 (PCH12). We aimed to expand the phenotypic spectrum and gain insights into the pathogenesis of COASY-related disorders. METHODS: Patients were identified through targeted or exome sequencing. To unravel the molecular mechanisms of disease, RNA sequencing, bioenergetic analysis, and quantification of critical proteins were performed on fibroblasts. RESULTS: We identified five new individuals harboring novel COASY variants. While one case exhibited classical CoPAN features, the others displayed atypical symptoms such as deafness, language and autism spectrum disorders, brain atrophy, and microcephaly. All patients experienced epilepsy, highlighting its potential frequency in COASY-related disorders. Fibroblast transcriptomic profiling unveiled dysregulated expression in genes associated with mitochondrial respiration, responses to oxidative stress, transmembrane transport, various cellular signaling pathways, and protein translation, modification, and trafficking. Bioenergetic analysis revealed impaired mitochondrial oxygen consumption in COASY fibroblasts. Despite comparable total CoA levels to control cells, the amounts of mitochondrial 4'-phosphopantetheinylated proteins were significantly reduced in COASY patients. INTERPRETATION: These results not only extend the clinical phenotype associated with COASY variants but also suggest a continuum between CoPAN and PCH12. The intricate interplay of altered cellular processes and signaling pathways provides valuable insights for further research into the pathogenesis of COASY-associated diseases.


Asunto(s)
Fenotipo , Transcriptoma , Humanos , Masculino , Femenino , Niño , Preescolar , Epilepsia/genética , Fibroblastos/metabolismo , Adolescente , Trastorno del Espectro Autista/genética , Adulto , Transferasas
3.
Am J Med Genet A ; 194(8): e63622, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38572626

RESUMEN

Nonketotic hyperglycinemia (NKH) is a relatively well-characterized inborn error of metabolism that results in a combination of lethargy, hypotonia, seizures, developmental arrest, and, in severe cases, death early in life. Three genes encoding components of the glycine cleavage enzyme system-GLDC, AMT, and GCSH-are independently associated with NKH. We report on a patient with severe NKH in whom the homozygous pathogenic variant in AMT (NM_000481.3):c.602_603del (p.Lys201Thrfs*75) and the homozygous likely pathogenic variant in GLDC(NM_000170.2):c.2852C>A (p.Ser951Tyr) were both identified. Our patient demonstrates a novel combination of two homozygous disease-causing variants impacting the glycine cleavage pathway at two different components, and elicits management- and genetic counseling-related challenges for the family.


Asunto(s)
Homocigoto , Hiperglicinemia no Cetósica , Humanos , Hiperglicinemia no Cetósica/genética , Hiperglicinemia no Cetósica/patología , Masculino , Glicina-Deshidrogenasa (Descarboxilante)/genética , Aminometiltransferasa/genética , Femenino , Mutación/genética , Lactante , Glicina/genética , Recién Nacido , Fenotipo , Predisposición Genética a la Enfermedad , Aminoácido Oxidorreductasas , Complejos Multienzimáticos , Transferasas
4.
Biochemistry (Mosc) ; 89(2): 241-256, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38622093

RESUMEN

Genes of putative reductases of α,ß-unsaturated carboxylic acids are abundant among anaerobic and facultatively anaerobic microorganisms, yet substrate specificity has been experimentally verified for few encoded proteins. Here, we co-produced in Escherichia coli a heterodimeric protein of the facultatively anaerobic marine bacterium Vibrio ruber (GenBank SJN56019 and SJN56021; annotated as NADPH azoreductase and urocanate reductase, respectively) with Vibrio cholerae flavin transferase. The isolated protein (named Crd) consists of the sjn56021-encoded subunit CrdB (NADH:flavin, FAD binding 2, and FMN bind domains) and an additional subunit CrdA (SJN56019, a single NADH:flavin domain) that interact via their NADH:flavin domains (Alphafold2 prediction). Each domain contains a flavin group (three FMNs and one FAD in total), one of the FMN groups being linked covalently by the flavin transferase. Crd readily reduces cinnamate, p-coumarate, caffeate, and ferulate under anaerobic conditions with NADH or methyl viologen as the electron donor, is moderately active against acrylate and practically inactive against urocanate and fumarate. Cinnamates induced Crd synthesis in V. ruber cells grown aerobically or anaerobically. The Crd-catalyzed reduction started by NADH demonstrated a time lag of several minutes, suggesting a redox regulation of the enzyme activity. The oxidized enzyme is inactive, which apparently prevents production of reactive oxygen species under aerobic conditions. Our findings identify Crd as a regulated NADH-dependent cinnamate reductase, apparently protecting V. ruber from (hydroxy)cinnamate poisoning.


Asunto(s)
Oxidorreductasas , Vibrio , Oxidorreductasas/metabolismo , NAD/metabolismo , Cinamatos , Oxidación-Reducción , Vibrio/genética , Vibrio/metabolismo , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , NADH Deshidrogenasa/metabolismo , Flavinas/química , Transferasas , Flavina-Adenina Dinucleótido/metabolismo
5.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673766

RESUMEN

The plastidic 2-C-methylerythritol 4-phosphate (MEP) pathway supplies the precursors of a large variety of essential plant isoprenoids, but its regulation is still not well understood. Using metabolic control analysis (MCA), we examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), in multiple grey poplar (Populus × canescens) lines modified in their DXS activity. Single leaves were dynamically labeled with 13CO2 in an illuminated, climate-controlled gas exchange cuvette coupled to a proton transfer reaction mass spectrometer, and the carbon flux through the MEP pathway was calculated. Carbon was rapidly assimilated into MEP pathway intermediates and labeled both the isoprene released and the IDP+DMADP pool by up to 90%. DXS activity was increased by 25% in lines overexpressing the DXS gene and reduced by 50% in RNA interference lines, while the carbon flux in the MEP pathway was 25-35% greater in overexpressing lines and unchanged in RNA interference lines. Isoprene emission was also not altered in these different genetic backgrounds. By correlating absolute flux to DXS activity under different conditions of light and temperature, the flux control coefficient was found to be low. Among isoprenoid end products, isoprene itself was unchanged in DXS transgenic lines, but the levels of the chlorophylls and most carotenoids measured were 20-30% less in RNA interference lines than in overexpression lines. Our data thus demonstrate that DXS in the isoprene-emitting grey poplar plays only a minor part in controlling flux through the MEP pathway.


Asunto(s)
Eritritol , Eritritol/análogos & derivados , Populus , Fosfatos de Azúcar , Transferasas , Populus/genética , Populus/metabolismo , Populus/enzimología , Eritritol/metabolismo , Fosfatos de Azúcar/metabolismo , Transferasas/metabolismo , Transferasas/genética , Hemiterpenos/metabolismo , Butadienos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Pentanos/metabolismo , Plantas Modificadas Genéticamente
6.
Sci Rep ; 14(1): 8978, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637685

RESUMEN

tRNA modifications play a crucial role in ensuring accurate codon recognition and optimizing translation levels. While the significance of these modifications in eukaryotic cells for maintaining cellular homeostasis and physiological functions is well-established, their physiological roles in bacterial cells, particularly in pathogenesis, remain relatively unexplored. The TusDCB protein complex, conserved in γ-proteobacteria like Escherichia coli, is involved in sulfur modification of specific tRNAs. This study focused on the role of TusDCB in the virulence of uropathogenic E. coli (UPEC), a bacterium causing urinary tract infections. The findings indicate that TusDCB is essential for optimal production of UPEC's virulence factors, including type 1 fimbriae and flagellum, impacting the bacterium's ability to aggregate in bladder epithelial cells. Deletion of tusDCB resulted in decreased virulence against urinary tract infection mice. Moreover, mutant TusDCB lacking sulfur transfer activity and tusE- and mnmA mutants revealed the indispensability of TusDCB's sulfur transfer activity for UPEC pathogenicity. The study extends its relevance to highly pathogenic, multidrug-resistant strains, where tusDCB deletion reduced virulence-associated bacterial aggregation. These insights not only deepen our understanding of the interplay between tRNA sulfur modification and bacterial pathogenesis but also highlight TusDCB as a potential therapeutic target against UPEC strains resistant to conventional antimicrobial agents.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Ratones , Virulencia/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones Urinarias/microbiología , Factores de Virulencia/genética , Transferasas/metabolismo
7.
ACS Infect Dis ; 10(4): 1312-1326, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38513073

RESUMEN

New antimicrobial strategies are needed to address pathogen resistance to currently used antibiotics. Bacterial central metabolism is a promising target space for the development of agents that selectively target bacterial pathogens. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) converts pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) to DXP, which is required for synthesis of essential vitamins and isoprenoids in bacterial pathogens. Thus, DXPS is a promising antimicrobial target. Toward this goal, our lab has demonstrated selective inhibition of Escherichia coli DXPS by alkyl acetylphosphonate (alkylAP)-based bisubstrate analogs that exploit the requirement for ternary complex formation in the DXPS mechanism. Here, we present the first DXPS structure with a bisubstrate analog bound in the active site. Insights gained from this cocrystal structure guided structure-activity relationship studies of the bisubstrate scaffold. A low nanomolar inhibitor (compound 8) bearing a gem-dibenzyl glycine moiety conjugated to the acetylphosphonate pyruvate mimic via a triazole-based linker emerged from this study. Compound 8 was found to exhibit slow, tight-binding inhibition, with contacts to E. coli DXPS residues R99 and R478 demonstrated to be important for this behavior. This work has discovered the most potent DXPS inhibitor to date and highlights a new role of R99 that can be exploited in future inhibitor designs toward the development of a novel class of antimicrobial agents.


Asunto(s)
Acetaldehído/análogos & derivados , Bacterias , Escherichia coli , Transferasas , Antibacterianos/química , Piruvatos/metabolismo
8.
Plant Physiol Biochem ; 208: 108506, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38461753

RESUMEN

Acetolactate synthase inhibitors (ALS inhibitors) and glyphosate are two classes of herbicides that act by inhibiting an enzyme in the biosynthetic pathway of branched-chain or aromatic amino acids, respectively. Besides amino acid synthesis inhibition, both herbicides trigger similar physiological effects in plants. The main aim of this study was to evaluate the role of glutathione metabolism, with special emphasis on glutathione S-transferases (GSTs), in the mode of action of glyphosate and ALS inhibitors in Amaranthus palmeri. For that purpose, plants belonging to a glyphosate-sensitive (GLS) and a glyphosate-resistant (GLR) population were treated with different doses of glyphosate, and plants belonging to an ALS-inhibitor sensitive (AIS) and an ALS-inhibitor resistant (AIR) population were treated with different doses of the ALS inhibitor nicosulfuron. Glutathione-related contents, GST activity, and related gene expressions (glutamate-cysteine ligase, glutathione reductase, Phi GST and Tau GST) were analysed in leaves. According to the results of the analytical determinations, there were virtually no basal differences between GLS and GLR plants or between AIS and AIR plants. Glutathione synthesis and turnover did not follow a clear pattern in response to herbicides, but GST activity and gene expression (especially Phi GSTs) increased with both herbicides in treated sensitive plants, possibly related to the rocketing H2O2 accumulation. As GSTs offered the clearest results, these were further investigated with a multiple resistant (MR) population, compressing target-site resistance to both glyphosate and the ALS inhibitor pyrithiobac. As in single-resistant plants, measured parameters in the MR population were unaffected by herbicides, meaning that the increase in GST activity and expression occurs due to herbicide interactions with the target enzymes.


Asunto(s)
Amaranthus , Herbicidas , Herbicidas/farmacología , Herbicidas/metabolismo , Peróxido de Hidrógeno/metabolismo , Resistencia a los Herbicidas , Glifosato , Glutatión/metabolismo , Transferasas/metabolismo
9.
Redox Biol ; 71: 103094, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479221

RESUMEN

Low-molecular-weight (LMW) thiols are produced in all living cells in different forms and concentrations. Glutathione (GSH), coenzyme A (CoA), bacillithiol (BSH), mycothiol (MSH), ergothioneine (ET) and trypanothione T(SH)2 are the main LMW thiols in eukaryotes and prokaryotes. LMW thiols serve as electron donors for thiol-dependent enzymes in redox-mediated metabolic and signaling processes, protect cellular macromolecules from oxidative and xenobiotic stress, and participate in the reduction of oxidative modifications. The level and function of LMW thiols, their oxidized disulfides and mixed disulfide conjugates in cells and tissues is tightly controlled by dedicated oxidoreductases, such as peroxiredoxins, glutaredoxins, disulfide reductases and LMW thiol transferases. This review provides the first summary of the current knowledge of structural and functional diversity of transferases for LMW thiols, including GSH, BSH, MSH and T(SH)2. Their role in maintaining redox homeostasis in single-cell and multicellular organisms is discussed, focusing in particular on the conjugation of specific thiols to exogenous and endogenous electrophiles, or oxidized protein substrates. Advances in the development of new research tools, analytical methodologies, and genetic models for the analysis of known LMW thiol transferases will expand our knowledge and understanding of their function in cell growth and survival under oxidative stress, nutrient deprivation, and during the detoxification of xenobiotics and harmful metabolites. The antioxidant function of CoA has been recently discovered and the breakthrough in defining the identity and functional characteristics of CoA S-transferase(s) is soon expected.


Asunto(s)
Antioxidantes , Compuestos de Sulfhidrilo , Compuestos de Sulfhidrilo/metabolismo , Antioxidantes/metabolismo , Transferasas/metabolismo , Oxidación-Reducción , Glutatión/metabolismo , Oxidorreductasas/metabolismo , Disulfuros/química
10.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473957

RESUMEN

Chlorogenic acids (CGAs) are bioactive compounds widely used in the food, pharmaceutical, and cosmetic industries. Carthamus tinctorius is an important economic crop, and its suspension cells are rich in CGAs. However, little is known about the biosynthesis and regulation of CGAs in Carthamus tinctorius cells. This study first elucidated the regulatory mechanism of CGA biosynthesis in methyl jasmonate (MeJA)-treated Carthamus tinctorius cells and the role of the MeJA-responsive hydroxycinnamoyl transferase (HCT) gene in enhancing their CGA accumulation. Firstly, temporal changes in intracellular metabolites showed that MeJA increased the intracellular CGA content up to 1.61-fold to 100.23 mg·g-1. Meanwhile, 31 primary metabolites showed significant differences, with 6 precursors related to increasing CGA biosynthesis. Secondly, the transcriptome data revealed 3637 new genes previously unannotated in the Carthamus tinctorius genome and 3653 differentially expressed genes. The genes involved in the plant signaling pathway and the biosynthesis of CGAs and their precursors showed a general up-regulation, especially the HCT gene family, which ultimately promoted CGA biosynthesis. Thirdly, the expression of a newly annotated and MeJA-responsive HCT gene (CtHCT, CtNewGene_3476) was demonstrated to be positively correlated with CGA accumulation in the cells, and transient overexpression of CtHCT enhanced CGA accumulation in tobacco. Finally, in vitro catalysis kinetics and molecular docking simulations revealed the ability and mechanism of the CtHCT protein to bind to various substrates and catalyze the formation of four hydroxycinnamic esters, including CGAs. These findings strengthened our understanding of the regulatory mechanism of CGA biosynthesis, thereby providing theoretical support for the efficient production of CGAs.


Asunto(s)
Acetatos , Carthamus tinctorius , Ciclopentanos , Oxilipinas , Transferasas , Transferasas/metabolismo , Ácido Clorogénico/metabolismo , Carthamus tinctorius/genética , Simulación del Acoplamiento Molecular , Transcriptoma , Nucleotidiltransferasas/metabolismo , Regulación de la Expresión Génica de las Plantas
11.
Antonie Van Leeuwenhoek ; 117(1): 47, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427176

RESUMEN

Desulfofundulus kuznetsovii is a thermophilic, spore-forming sulphate-reducing bacterium in the family Peptococcaceae. In this study, we describe a newly isolated strain of D. kuznetsovii, strain TPOSR, and compare its metabolism to the type strain D. kuznetsovii 17T. Both strains grow on a large variety of alcohols, such as methanol, ethanol and propane-diols, coupled to the reduction of sulphate. Strain 17T metabolizes methanol via two routes, one involving a cobalt-dependent methyl transferase and the other using a cobalt-independent alcohol dehydrogenase. However, strain TPOSR, which shares 97% average nucleotide identity with D. kuznetsovii strain 17T, lacks several genes from the methyl transferase operon found in strain 17T. The gene encoding the catalytically active methyl transferase subunit B is missing, indicating that strain TPOSR utilizes the alcohol dehydrogenase pathway exclusively. Both strains grew with methanol during cobalt starvation, but growth was impaired. Strain 17T was more sensitive to cobalt deficiency, due to the repression of its methyl transferase system. Our findings shed light on the metabolic diversity of D. kuznetsovii and their metabolic differences of encoding one or two routes for the conversion of methanol.


Asunto(s)
Alcohol Deshidrogenasa , Metanol , Peptococcaceae , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Metanol/metabolismo , Oxidación-Reducción , Transferasas/metabolismo , Sulfatos/metabolismo , Cobalto , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo
12.
Sci Rep ; 14(1): 5765, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459140

RESUMEN

Autism spectrum disorder (ASD) is a complicated, lifelong neurodevelopmental disorder affecting verbal and non-verbal communication and social interactions. ASD signs and symptoms appear early in development before the age of 3 years. It is unlikely for a person to acquire autism after a period of normal development. However, we encountered an 8-year-old child who developed ASD later in life although his developmental milestones were normal at the beginning of life. Sequencing the complete coding part of the genome identified a hemizygous nonsense mutation (NM_001367857.2):c.1803C>G; (p.Tyr601Ter) in the gene (SATL1) encoding spermidine/spermine N1-acetyl transferase like 1. Screening an ASD cohort of 28 isolated patients for the SATL1 gene identified another patient with the same variant. Although SATL1 mutations have not been associated with any human diseases, our data suggests that a mutation in SATL1 is the underlying cause of ASD in our cases. In mammals, mutations in spermine synthase (SMS), an enzyme needed for the synthesis of spermidine polyamine, have been reported in a syndromic form of the X-linked mental retardation. Moreover, SATL1 gene expression studies showed a relatively higher expression of SATL1 transcripts in ASD related parts of the brain including the cerebellum, amygdala and frontal cortex. Additionally, spermidine has been characterized in the context of learning and memory and supplementations with spermidine increase neuroprotective effects and decrease age-induced memory impairment. Furthermore, spermidine biosynthesis is required for spontaneous axonal regeneration and prevents α-synuclein neurotoxicity in invertebrate models. Thus, we report, for the first time, that a mutation in the SATL1 gene could be a contributing factor in the development of autistic symptoms in our patients.


Asunto(s)
Trastorno del Espectro Autista , Espermidina , Animales , Niño , Humanos , Trastorno del Espectro Autista/genética , Poliaminas/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Transferasas
13.
Carbohydr Res ; 538: 109095, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38507941

RESUMEN

Moraxella nonliquefaciens is a commensal of the human upper respiratory tract (URT) but on rare occasions is recovered in cases of ocular, septic and pulmonary infections. Hence there is interest in the pathogenic determinants of M. nonliquefaciens, of which outer membrane (OM) structures such as fimbriae and two capsular polysaccharide (CPS) structures, →3)-ß-D-GalpNAc-(1→5)-ß-Kdop-(2→ and →8)-α-NeuAc-(2→, have been reported in the literature. To further characterise its surface virulence factors, we isolated a novel CPS from M. nonliquefaciens type strain CCUG 348T. This structure was elucidated using NMR data obtained from CPS samples that were subjected to various degrees of mild acid hydrolysis. Together with GLC-MS data, the structure was resolved as a linear polymer composed of two GalfNAc residues consecutively added to Kdo, →3)-ß-D-GalfNAc-(1→3)-α-D-GalfNAc-(1→5)-α-(8-OAc)Kdop-(2→. Supporting evidence for this material being CPS was drawn from the proposed CPS biosynthetic locus which encoded a potential GalfNAc transferase, a UDP-GalpNAc mutase for UDP-GalfNAc production and a putative CPS polymerase with predicted GalfNAc and Kdo transferase domains. This study describes a unique CPS composition reported in Moraxella spp. and offers genetic insights into the synthesis and expression of GalfNAc residues, which are rare in bacterial OM glycans.


Asunto(s)
Moraxella , Polisacáridos , Humanos , Polisacáridos/análisis , Transferasas/análisis , Uridina Difosfato/análisis , Cápsulas Bacterianas/química , Polisacáridos Bacterianos/química
14.
Clin Neurol Neurosurg ; 239: 108189, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38437773

RESUMEN

BACKGROUND: Levodopa treatment requires the addition of other drugs, such as catechol-O-methyl transferase (COMT) inhibitors, to alleviate motor fluctuations in advanced parkinson's disease (PD). However, the optimal strategy, including the type and dose of COMT inhibitors remains unknown. This systematic review and network meta-analysis aimed to assess the efficacy and safety of different COMT inhibitors and for treating PD patients. METHODS: PubMed, Embase, Cochrane Library and Web of Science were screened up to November 20, 2022. Randomized controlled trials (RCTs) of COMT inhibitors (entacapone, opicapone, tolcapone) for PD patients were included. Eligible outcomes were total ON-time, rate of ON-time >1 h, total daily dose of levodopa therapy, mean change from baseline to final follow up in Unified Parkinson's Disease Rating Scale (UPDRS) part III scores, adverse events and dyskinesia. Network meta-analyses integrated direct and indirect evidence with placebo as a common comparator. RESULTS: We identified 18 studies with 7564 patients. Opicapone, entacapone, and tolcapone could increase total ON-time when compared with placebo. However, opicapone (25 mg, MD 4.0, 95%CrI: 1.1-7.5) and opicapone (50 mg, MD 5.1, 95%CrI: 2.2-8.7) statistically significant increase the total ON-time. opicapone and entacapone could increase the rate of ON-time >1 h when compared with placebo. Only opicapone (5 mg) showed no statistically significant with placebo (OR 1.4, 95%CrI: 0.74-2.4). We found that opicapone (50 mg, SURCA, 0.796) is the best option compared with other treatments. TOL (200 mg) was ranked highest in the rank probability test for total daily dose of levodopa therapy, followed by OPI (50 mg), TOL (400 mg) and TOL (100 mg) in order. SUCRA rankings identified TOL (200 mg) as the most likely therapy for increasing adverse events (SUCRA 27.19%), followed by TOL (400 mg, SUCRA 27.20%) and OPI (5 mg, SUCRA 30.81%). The SUCRA probabilities were 91.6%, 75.2%, 67.9%, 59.3%, 45.6%, 41.1%, 35.1%, 24.6% and 9.4% for PLA, TOL (400 mg), ENT (100 mg), ENT (200 mg), OPI (5 mg), TOL (100 mg), OPI (25 mg), OPI (50 mg), and TOL (200 mg) respectively. CONCLUSION: In conclusion, opicapone (50 mg) may be a better choice for treatment PD when compared with other COMT inhibitors.


Asunto(s)
Nitrilos , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Levodopa/efectos adversos , Antiparkinsonianos/efectos adversos , Tolcapona/uso terapéutico , Metaanálisis en Red , Inhibidores de Catecol O-Metiltransferasa/uso terapéutico , Inhibidores de Catecol O-Metiltransferasa/farmacología , Catecoles/efectos adversos , Transferasas/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto
15.
ACS Chem Biol ; 19(3): 629-640, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394345

RESUMEN

Exo-enzymatic glyco-engineering of cell-surface glycoconjugates enables the selective display of well-defined glyco-motifs bearing bioorthogonal functional groups, which can be used to study glycans and their interactions with glycan-binding proteins. In recent years, strategies to edit cellular glycans by installing monosaccharides and their derivatives using glycosyltransferase enzymes have rapidly expanded. However, analogous methods to introduce chemical reporter-functionalized type 2 LacNAc motifs have not been reported. Herein, we report the chemo-enzymatic synthesis of unnatural UDP-GlcNAc and UDP-GalNAc nucleotide-sugars bearing azide, alkyne, and diazirine functionalities on the C2-acetamido group using the mutant uridylyltransferase AGX1F383A. The unnatural UDP-GlcNAc derivatives were examined as substrates for the human GlcNAc-transferase B3GNT2, where it was found that modified donors were tolerated for transfer, albeit to a lesser extent than the natural UDP-GlcNAc substrate. When the GlcNAc derivatives were examined as acceptor substrates for the human Gal-transferase B4GalT1, all derivatives were well tolerated and the enzyme could successfully form derivatized LacNAcs. B3GNT2 was also used to exo-enzymatically install GlcNAc and unnatural GlcNAc derivatives on cell-surface glycans. GlcNAc- or GlcNAz-engineered cells were further extended by B4GalT1 and UDP-Gal, producing LacNAc- or LacNAz-engineered cells. Our proof-of-concept glyco-engineering labeling strategy is amenable to different cell types and our work expands the exo-enzymatic glycan editing toolbox to selectively introduce unnatural type 2 LacNAc motifs.


Asunto(s)
Glicoconjugados , Polisacáridos , Humanos , Polisacáridos/metabolismo , Membrana Celular/metabolismo , Transferasas , Uridina Difosfato
16.
Proc Natl Acad Sci U S A ; 121(7): e2322375121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315835

RESUMEN

Protein S-acyl transferases (PATs) catalyze S-acylation, a reversible post-translational modification critical for membrane association, trafficking, and stability of substrate proteins. Many plant proteins are potentially S-acylated but few have corresponding PATs identified. By using genomic editing, confocal imaging, pharmacological, genetic, and biochemical assays, we demonstrate that three Arabidopsis class C PATs positively regulate BR signaling through S-acylation of BRASSINOSTEROID-SIGNALING KINASE1 (BSK1). PAT19, PAT20, and PAT22 associate with the plasma membrane (PM) and the trans-Golgi network/early endosome (TGN/EE). Functional loss of all three genes results in a plethora of defects, indicative of reduced BR signaling and rescued by enhanced BR signaling. PAT19, PAT20, and PAT22 interact with BSK1 and are critical for the S-acylation of BSK1, and for BR signaling. The PM abundance of BSK1 was reduced by functional loss of PAT19, PAT20, and PAT22 whereas abolished by its S-acylation-deficient point mutations, suggesting a key role of S-acylation in its PM targeting. Finally, an active BR analog induces vacuolar trafficking and degradation of PAT19, PAT20, or PAT22, suggesting that the S-acylation of BSK1 by the three PATs serves as a negative feedback module in BR signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinasas , Acilación , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , Transferasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
17.
Biochemistry ; 63(5): 651-659, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38388156

RESUMEN

AMPylation is a post-translational modification utilized by human and bacterial cells to modulate the activity and function of specific proteins. Major AMPylators such as human FICD and bacterial VopS have been studied extensively for their substrate and target scope in vitro. Recently, an AMP pronucleotide probe also facilitated the in situ analysis of AMPylation in living cells. Based on this technology, we here introduce a novel UMP pronucleotide probe and utilize it to profile uninfected and Vibrio parahaemolyticus infected human cells. Mass spectrometric analysis of labeled protein targets reveals an unexpected promiscuity of human nucleotide transferases with an almost identical target set of AMP- and UMPylated proteins. Vice versa, studies in cells infected by V. parahaemolyticus and its effector VopS revealed solely AMPylation of host enzymes, highlighting a so far unknown specificity of this transferase for ATP. Taken together, pronucleotide probes provide an unprecedented insight into the in situ activity profile of crucial nucleotide transferases, which can largely differ from their in vitro activity.


Asunto(s)
Nucleótidos , Transferasas , Humanos , Nucleótidos/metabolismo , Transferasas/metabolismo , Proteínas Bacterianas/química , Adenosina Monofosfato/metabolismo , Procesamiento Proteico-Postraduccional
18.
Elife ; 122024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358918

RESUMEN

Bacterial cell surface glycoconjugates are critical for cell survival and for interactions between bacteria and their hosts. Consequently, the pathways responsible for their biosynthesis have untapped potential as therapeutic targets. The localization of many glycoconjugate biosynthesis enzymes to the membrane represents a significant challenge for expressing, purifying, and characterizing these enzymes. Here, we leverage cutting-edge detergent-free methods to stabilize, purify, and structurally characterize WbaP, a phosphoglycosyl transferase (PGT) from the Salmonella enterica (LT2) O-antigen biosynthesis. From a functional perspective, these studies establish WbaP as a homodimer, reveal the structural elements responsible for dimerization, shed light on the regulatory role of a domain of unknown function embedded within WbaP, and identify conserved structural motifs between PGTs and functionally unrelated UDP-sugar dehydratases. From a technological perspective, the strategy developed here is generalizable and provides a toolkit for studying other classes of small membrane proteins embedded in liponanoparticles beyond PGTs.


Asunto(s)
Salmonella enterica , Transferasas , Transferasas/genética , Transferasas/química , Antígenos O , Metabolismo de los Hidratos de Carbono , Membrana Celular , Salmonella enterica/genética
19.
Bone ; 181: 117043, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341164

RESUMEN

Bone formation and homeostasis are controlled by environmental factors and endocrine regulatory cues that initiate intracellular signaling pathways capable of modulating gene expression in the nucleus. Bone-related gene expression is controlled by nucleosome-based chromatin architecture that limits the accessibility of lineage-specific gene regulatory DNA sequences and sequence-specific transcription factors. From a developmental perspective, bone-specific gene expression must be suppressed during the early stages of embryogenesis to prevent the premature mineralization of skeletal elements during fetal growth in utero. Hence, bone formation is initially inhibited by gene suppressive epigenetic regulators, while other epigenetic regulators actively support osteoblast differentiation. Prominent epigenetic regulators that stimulate or attenuate osteogenesis include lysine methyl transferases (e.g., EZH2, SMYD2, SUV420H2), lysine deacetylases (e.g., HDAC1, HDAC3, HDAC4, HDAC7, SIRT1, SIRT3), arginine methyl transferases (e.g., PRMT1, PRMT4/CARM1, PRMT5), dioxygenases (e.g., TET2), bromodomain proteins (e.g., BRD2, BRD4) and chromodomain proteins (e.g., CBX1, CBX2, CBX5). This narrative review provides a broad overview of the covalent modifications of DNA and histone proteins that involve hundreds of enzymes that add, read, or delete these epigenetic modifications that are relevant for self-renewal and differentiation of mesenchymal stem cells, skeletal stem cells and osteoblasts during osteogenesis.


Asunto(s)
Osteogénesis , Factores de Transcripción , Osteogénesis/genética , Factores de Transcripción/metabolismo , Lisina/metabolismo , Proteínas Nucleares/genética , Diferenciación Celular/genética , Epigénesis Genética , Osteoblastos/metabolismo , Transferasas/genética , Transferasas/metabolismo
20.
Int J Biol Macromol ; 263(Pt 2): 130347, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401583

RESUMEN

Polypeptide N-acetylgalactosamine transferase 9 (GALNT9) catalyzes the initial step of mucin-type O-glycosylation via linking N-acetylgalactosamine (GalNAc) to serine/threonine in a protein. To unravel the association of GALNT9 with Parkinson's disease (PD), a progressive neurodegenerative disorder, GALNT9 levels were evaluated in the patients with PD and mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and statistically analyzed based on the GEO datasets of GSE114918 and GSE216281. Glycoproteins with exposing GalNAc were purified using lectin affinity chromatography and identified by LC-MS/MS. The influence of GALNT9 on cells was evaluated via introducing a GALNT9-specific siRNA into SH-SY5Y cells. Consequently, GALNT9 deficiency was found to occur under PD conditions. GALNT9 silencing contributed to a causative factor in PD pathogenesis via reducing the levels of intracellular dopamine, tyrosine hydroxylase and soluble α-synuclein, and promoting α-synuclein aggregates. MS identification revealed 14 glycoproteins. 5 glycoproteins, including ACO2, ATP5B, CKB, CKMT1A, ALDOC, were associated with energy metabolism. GALNT9 silencing resulted in mitochondrial dysfunctions via increasing ROS accumulation, mitochondrial membrane depolarization, mPTPs opening, Ca2+ releasing and activation of the CytC-related apoptotic pathway. The dysfunctional mitochondria then triggered mitophagy, possibly intermediated by adenine nucleotide translocase 1. Our study suggests that GALNT9 is potentially developed into an auxiliary diagnostic index and therapeutic target of PD.


Asunto(s)
Enfermedades Mitocondriales , N-Acetilgalactosaminiltransferasas , Neuroblastoma , Enfermedad de Parkinson , Humanos , Ratones , Animales , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/química , Acetilgalactosamina/química , Transferasas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Péptidos , Glicoproteínas , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Creatina Quinasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...