Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(37): 8908-8914, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39231533

RESUMEN

In-cell electron paramagnetic resonance (EPR) spectroscopy experiments provide high-resolution data about conformational changes of proteins within the cell. However, one of the limitations of EPR is the requisite of stable paramagnetic centers in a reducing environment. We recently showed that histidine-rich sites in proteins hold a high affinity to Cu(II) ions complexed with a chelator. Using a chelator prevents the reduction of Cu(II) ions. Moreover, this spin-labeling methodology can be performed within the native cellular environment on any overexpressed protein without protein purification and delivery to the cell. Herein, we use this novel methodology to gain spatial information on the extracellular domain of the human copper transporter, hCtr1. Limited structural information on the transmembrane domain of the human Ctr1 (hCtr1) was obtained using X-ray crystallography and cryo-EM. However, these structures are missing information on the disordered extracellular domains of hCtr1. Extracellular domains are sensing or interacting with the environment outside of the cell and therefore play an essential role in any transmembrane protein. Especially in hCtr1, the extracellular domain functions as a gating mechanism for copper ions. Here, we performed EPR experiments revealing structural information about the extracellular N-terminal domain of the full-length hCtr1 in vitro and in situ in insect cells and cell membrane fragments. The comparison revealed that the extracellular domains of the in situ and native membrane hCtr1 are further apart than the structure of the purified protein. These method-related differences highlight the significance of studying membrane proteins in their native environment.


Asunto(s)
Transportador de Cobre 1 , Cobre , Marcadores de Spin , Cobre/química , Humanos , Transportador de Cobre 1/metabolismo , Transportador de Cobre 1/química , Espectroscopía de Resonancia por Spin del Electrón , Dominios Proteicos , Animales , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo
2.
Biophys J ; 121(7): 1194-1204, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35202609

RESUMEN

Abnormal cellular copper levels have been clearly implicated in genetic diseases, cancer, and neurodegeneration. Ctr1, a high-affinity copper transporter, is a homotrimeric integral membrane protein that provides the main route for cellular copper uptake. Together with a sophisticated copper transport system, Ctr1 regulates Cu(I) metabolism in eukaryotes. Despite its pivotal role in normal cell function, the molecular mechanism of copper uptake and transport via Ctr1 remains elusive. In this study, electron paramagnetic resonance (EPR), UV-visible spectroscopy, and all-atom simulations were employed to explore Cu(I) binding to full-length human Ctr1 (hCtr1), thereby elucidating how metal binding at multiple distinct sites affects the hCtr1 conformational dynamics. We demonstrate that each hCtr1 monomer binds up to five Cu(I) ions and that progressive Cu(I) binding triggers a marked structural rearrangement in the hCtr1 C-terminal region. The observed Cu(I)-induced conformational remodeling suggests that the C-terminal region may play a dual role, serving both as a channel gate and as a shuttle mediating the delivery of copper ions from the extracellular hCtr1 selectivity filter to intracellular metallochaperones. Our findings thus contribute to a more complete understanding of the mechanism of hCtr1-mediated Cu(I) uptake and provide a conceptual basis for developing mechanism-based therapeutics for treating pathological conditions linked to de-regulated copper metabolism.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas Transportadoras de Cobre , Transportador de Cobre 1 , Cobre , Cobre/química , Cobre/metabolismo , Proteínas Transportadoras de Cobre/química , Proteínas Transportadoras de Cobre/metabolismo , Transportador de Cobre 1/química , Transportador de Cobre 1/metabolismo , Humanos , Iones/química , Iones/metabolismo
3.
J Biol Chem ; 298(3): 101631, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35090891

RESUMEN

Copper(I) is an essential metal for all life forms. Though Cu(II) is the most abundant and stable state, its reduction to Cu(I) via an unclear mechanism is prerequisite for its bioutilization. In eukaryotes, the copper transporter-1 (CTR1) is the primary high-affinity copper importer, although its mechanism and role in Cu(II) reduction remain uncharacterized. Here we show that extracellular amino-terminus of human CTR1 contains two methionine-histidine clusters and neighboring aspartates that distinctly bind Cu(I) and Cu(II) preceding its import. We determined that hCTR1 localizes at the basolateral membrane of polarized MDCK-II cells and that its endocytosis to Common-Recycling-Endosomes is regulated by reduction of Cu(II) to Cu(I) and subsequent Cu(I) coordination by the methionine cluster. We demonstrate the transient binding of both Cu(II) and Cu(I) during the reduction process is facilitated by aspartates that also act as another crucial determinant of hCTR1 endocytosis. Mutating the first Methionine cluster (7Met-Gly-Met9) and Asp13 abrogated copper uptake and endocytosis upon copper treatment. This phenotype could be reverted by treating the cells with reduced and nonreoxidizable Cu(I). We show that histidine clusters, on other hand, bind Cu(II) and are crucial for hCTR1 functioning at limiting copper. Finally, we show that two N-terminal His-Met-Asp clusters exhibit functional complementarity, as the second cluster is sufficient to preserve copper-induced CTR1 endocytosis upon complete deletion of the first cluster. We propose a novel and detailed mechanism by which the two His-Met-Asp residues of hCTR1 amino-terminus not only bind copper, but also maintain its reduced state, crucial for intracellular uptake.


Asunto(s)
Transportador de Cobre 1 , Cobre , Metionina , Cobre/metabolismo , Transportador de Cobre 1/química , Transportador de Cobre 1/metabolismo , Endocitosis , Histidina , Humanos , Metionina/química , Metionina/metabolismo
4.
Inorg Chem ; 59(23): 16952-16966, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33211469

RESUMEN

Amyloid beta (Aß) peptides are notorious for their involvement in Alzheimer's disease (AD), by virtue of their propensity to aggregate to form oligomers, fibrils, and eventually plaques in the brain. Nevertheless, they appear to be essential for correct neurophysiology on the synaptic level and may have additional functions including antimicrobial activity, sealing the blood-brain barrier, promotion of recovery from brain injury, and even tumor suppression. Aß peptides are also avid copper chelators, and coincidentally copper is significantly dysregulated in the AD brain. Copper (Cu) is released in significant amounts during calcium signaling at the synaptic membrane. Aß peptides may have a role in maintaining synaptic Cu homeostasis, including as a scavenger for redox-active Cu and as a chaperone for clearing Cu from the synaptic cleft. Here, we employed the Aß1-16 and Aß4-16 peptides as well-established non-aggregating models of major Aß species in healthy and AD brains, and the Ctr1-14 peptide as a model for the extracellular domain of the human cellular copper transporter protein (Ctr1). With these model peptides and a number of spectroscopic techniques, we investigated whether the Cu complexes of Aß peptides could provide Ctr1 with either Cu(II) or Cu(I). We found that Aß1-16 fully and rapidly delivered Cu(II) to Ctr1-14 along the affinity gradient. Such delivery was only partial for the Aß4-16/Ctr1-14 pair, in agreement with the higher complex stability for the former peptide. Moreover, the reaction was very slow and took ca. 40 h to reach equilibrium under the given experimental conditions. In either case of Cu(II) exchange, no intermediate (ternary) species were present in detectable amounts. In contrast, both Aß species released Cu(I) to Ctr1-14 rapidly and in a quantitative fashion, but ternary intermediate species were detected in the analysis of XAS data. The results presented here are the first direct evidence of a Cu(I) and Cu(II) transfer between the human Ctr1 and Aß model peptides. These results are discussed in terms of the fundamental difference between the peptides' Cu(II) complexes (pleiotropic ensemble of open structures of Aß1-16 vs the rigid closed-ring system of amino-terminal Cu/Ni binding Aß4-16) and the similarity of their Cu(I) complexes (both anchored at the tandem His13/His14, bis-His motif). These results indicate that Cu(I) may be more feasible than Cu(II) as the cargo for copper clearance from the synaptic cleft by Aß peptides and its delivery to Ctr1. The arguments in favor of Cu(I) include the fact that cellular Cu export and uptake proteins (ATPase7A/B and Ctr1, respectively) specifically transport Cu(I), the abundance of extracellular ascorbate reducing agent in the brain, and evidence of a potential associative (hand-off) mechanism of Cu(I) transfer that may mirror the mechanisms of intracellular Cu chaperone proteins.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Transportador de Cobre 1/metabolismo , Cobre/metabolismo , Péptidos beta-Amiloides/química , Cobre/química , Transportador de Cobre 1/química , Humanos , Espectrometría de Fluorescencia
5.
Chem Commun (Camb) ; 56(81): 12194-12197, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-32914794

RESUMEN

Employing peptide-based models of copper transporter 1 (CTR1), we show that the trimeric arrangement of its N-terminus tunes its reactivity with Cu, promoting Cu(ii) reduction and stabilizing Cu(i). Hence, the employed multimeric models of CTR1 provide an important contribution to studies on early steps of Cu uptake by cells.


Asunto(s)
Transportador de Cobre 1/metabolismo , Cobre/metabolismo , Sitios de Unión , Cobre/química , Transportador de Cobre 1/química , Humanos , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción
6.
Protein Expr Purif ; 164: 105477, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31419547

RESUMEN

His-tagging is commonly used in fusion protein production, but the His-tag is usually prohibited in medicinal proteins and must be removed. A fragment (NCTR25-tag) truncated from the N-terminus of human copper transporter 1 was tested for feasibility as a replacement for the His-tag in fusion proteins. The NCTR25-tag and His-tag were separately fused to the transthyretin (TTR) protein, and the expression, affinity purification, refolding and stability of the two kinds of fusions were compared. NCTR25 fusion produced a 63% higher yield of the recombinant protein, which was purified by metal affinity chromatography with an efficiency similar to that of His-tagged protein. NCTR25-tag fusion had much less impact on the foldability, kinetic and thermodynamic stability of tetrameric TTR than His-tag fusion. When the tags were individually fused to enhanced green fluorescent protein (EGFP), NCTR25 fusion yielded 29-128% more product than His-EGFP. NCTR25-EGFP could be purified by metal affinity chromatography and showed better foldability than His-EGFP. Furthermore, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) fusion with the third disulfide loop of TGF-α (TGF3L-TRAIL) fused with the NCTR25-tag retained the stability and superactivity of His-TGF3L-TRAIL. Therefore, the native tag NCTR25-tag is a feasible alternative to the His-tag in medicinal recombinant proteins.


Asunto(s)
Cromatografía de Afinidad/métodos , Transportador de Cobre 1/química , Prealbúmina/química , Proteínas Recombinantes de Fusión/química , Línea Celular Tumoral , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , Escherichia coli/genética , Expresión Génica , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histidina/química , Humanos , Plásmidos/genética , Prealbúmina/genética , Prealbúmina/metabolismo , Replegamiento Proteico , Estabilidad Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
7.
Biometals ; 32(4): 695-705, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31292775

RESUMEN

Copper-zinc superoxide dismutase (Sod1) is a critical antioxidant enzyme that rids the cell of reactive oxygen through the redox cycling of a catalytic copper ion provided by its copper chaperone (Ccs). Ccs must first acquire this copper ion, directly or indirectly, from the influx copper transporter, Ctr1. The three proteins of this transport pathway ensure careful trafficking of copper ions from cell entry to target delivery, but the intricacies remain undefined. Biochemical examination of each step in the pathway determined that the activation of the target (Sod1) regulates the Ccs·Ctr1 interaction. Ccs stably interacts with the cytosolic C-terminal tail of Ctr1 (Ctr1c) in a copper-dependent manner. This interaction becomes tripartite upon the addition of an engineered immature form of Sod1 creating a stable Cu(I)-Ctr1c·Ccs·Sod1 heterotrimer in solution. This heterotrimer can also be made by the addition of a preformed Sod1·Ccs heterodimer to Cu(I)-Ctr1c, suggestive of multiple routes to the same destination. Only complete Sod1 activation (i.e. active site copper delivery and intra-subunit disulfide bond formation) breaks the Sod1·Ccs·Ctr1c complex. The results provide a new and extended view of the Sod1 activation pathway(s) originating at cellular copper import.


Asunto(s)
Transportador de Cobre 1/metabolismo , Cobre/metabolismo , Superóxido Dismutasa-1/metabolismo , Cobre/química , Transportador de Cobre 1/química , Unión Proteica , Superóxido Dismutasa-1/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA