Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(8): e0267464, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35994436

RESUMEN

Establishing the genetic diversity and population structure of a species can guide the selection of appropriate conservation and sustainable utilization strategies. Next-generation sequencing (NGS) approaches are increasingly being used to generate multi-locus data for genetic structure determination. This study presents the genetic structure of a fodder species -Trema orientalis based on two genome-wide high-throughput diversity array technology (DArT) markers; silicoDArT and single nucleotide polymorphisms (SNPs). Genotyping of 119 individuals generated 40,650 silicoDArT and 4767 SNP markers. Both marker types had a high average scoring reproducibility (>99%). Genetic relationships explored by principal coordinates analysis (PCoA) showed that the first principal coordinate axis explained most of the variation in both the SilicoDArT (34.2%) and SNP (89.6%) marker data. The average polymorphic information content did not highly differ between silicoDArT (0.22) and SNPs (0.17) suggesting minimal differences in informativeness in the two groups of markers. The, mean observed (Ho) and expected (He) heterozygosity were low and differed between the silicoDArT and SNPs respectively, estimated at Ho = 0.08 and He = 0.05 for silicoDArT and Ho = 0.23 and He = 0.19 for SNPs. The population of T. orientalis was moderately differentiated (FST = 0.20-0.53) and formed 2 distinct clusters based on maximum likelihood and principal coordinates analysis. Analysis of molecular variance revealed that clusters contributed more to the variation (46.3-60.8%) than individuals (32.9-31.2%). Overall, the results suggest a high relatedness of the individuals sampled and a threatened genetic potential of T. orientalis in the wild. Therefore, genetic management activities such as ex-situ germplasm management are required for the sustainability of the species. Ex-situ conservation efforts should involve core collection of individuals from different populations to capture efficient diversity. This study demonstrates the importance of silicoDArT and SNP makers in population structure and genetic diversity analysis of Trema orientalis, useful for future genome wide studies in the species.


Asunto(s)
Polimorfismo de Nucleótido Simple , Trema , Alimentación Animal , Variación Genética , Genética de Población , Reproducibilidad de los Resultados , Trema/genética
2.
Biochemistry ; 49(19): 4085-93, 2010 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-20377207

RESUMEN

All plants contain hemoglobins that fall into distinct phylogenetic classes. The subset of plants that carry out symbiotic nitrogen fixation expresses hemoglobins that scavenge and transport oxygen to bacterial symbiotes within root nodules. These "symbiotic" oxygen transport hemoglobins are distinct in structure and function from the nonoxygen transport ("nonsymbiotic") Hbs found in all plants. Hemoglobins found in two closely related plants present a paradox concerning hemoglobin structure and function. Parasponia andersonii is a nitrogen-fixing plant that expresses a symbiotic hemoglobin (ParaHb) characteristic of oxygen transport hemoglobins in having a pentacoordinate ferrous heme iron, moderate oxygen affinity, and a relatively rapid oxygen dissociation rate constant. A close relative that does not fix nitrogen, Trema tomentosa, expresses hemoglobin (TremaHb) sharing 93% amino acid identity to ParaHb, but its phylogeny predicts a typical nonsymbiotic hemoglobin with a hexacoordinate heme iron, high oxygen affinity, and slow oxygen dissociation rate constant. Here we characterize heme coordination and oxygen binding in TremaHb and ParaHb to investigate whether or not two hemoglobins with such high sequence similarity are actually so different in functional behavior. Our results indicate that the two proteins resemble nonsymbiotic hemoglobins in the ferric oxidation state and symbiotic hemoglobins in the ferrous oxidation state. They differ from each other only in oxygen affinity and oxygen dissociation rate constants, two factors key to their different functions. These results demonstrate distinct mechanisms for convergent evolution of oxygen transport in different phylogenetic classes of plant hemoglobins.


Asunto(s)
Evolución Biológica , Hemoglobinas/química , Proteínas de Plantas/metabolismo , Rosales/metabolismo , Trema/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Hemoglobinas/genética , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Oxígeno/metabolismo , Filogenia , Proteínas de Plantas/genética , Rosales/genética , Simbiosis , Trema/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA