Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.108
Filtrar
1.
Toxicon ; 250: 108111, 2024 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-39332502

RESUMEN

Venom-induced hemorrhage analysis usually is performed by Minimum Hemorrhagic Dose (MHD), however a similar method can be used to compare venoms with fewer laboratory animals. Our work compared the MHD of five different venoms, with the size of hemorrhagic spot, finding good correlations in the results. Considering the 3Rs principle, we propose the use of the hemorrhagic spot method to compare hemorrhagic activity of snake venoms, rather than using the MHD method, since the first one needs 5 times less animals than the other.


Asunto(s)
Hemorragia , Venenos de Serpiente , Animales , Hemorragia/inducido químicamente , Venenos de Serpiente/toxicidad , Ratones , Alternativas a las Pruebas en Animales , Venenos Elapídicos/toxicidad , Venenos de Crotálidos/toxicidad , Mordeduras de Serpientes
2.
Toxicon ; 249: 108082, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39209220

RESUMEN

Despite the wide range of institutions that maintain venomous snakes in captivity in Brazil there are no comprehensive data on the occurrence of snakebites and envenomations in these places. We examined the range of native and exotic species of venomous snakes kept by Brazilian zoos and serpentaria (scientific and commercial) and assessed the frequency of snakebites in workers handling these snakes during a 10-year period (2012-2021). Twenty-two (73.3%) of 30 institutions returned a standard questionnaire, including 15 serpentaria and 7 zoos that together kept 10,607 venomous snakes in 2022/2023. Commercial and scientific serpentaria had many more snakes (n = 10,550, consisting of 10,499 native specimens and 51 exotic specimens) than zoos (n = 57 native specimens), with two genera accounting for the majority of native species (Bothrops spp. = 84.5% and Crotalus durissus ssp. = 13.5%). Thirty-seven snakebites were reported and involved primarily the hands (33), seven of which occurred during venom extraction and 30 in other circumstances, most of them while handling/manipulating the cages or snake boxes (10) and restraining (9) or feeding (5) the snake. In addition, there were two cases of venom accidently sprayed on the face, including the eyes. Most bites were caused by Bothrops spp. (31), followed by C. durissus ssp. (4), Lachesis muta (1) and Micrurus corallinus (1). Thirty-three bites (89.2%) were treated with antivenom, with four bites to the fingers by Bothrops spp. resulting in local functional sequelae. There were 366,918 venom extractions with a ratio of 1.9 bites/100,000 extractions; no bites were recorded in the six institutions that sedated the snakes prior to venom extraction, which accounted for 22.7% of all extractions. These findings show that although snakebites are rare in Brazilian zoos and serpentaria, severe envenomation may occur. The occurrence of snakebites could be reduced by measures such as sedation of the snakes before venom extraction.


Asunto(s)
Animales de Zoológico , Mordeduras de Serpientes , Mordeduras de Serpientes/epidemiología , Animales , Brasil/epidemiología , Humanos , Venenos de Serpiente , Bothrops , Crotalus , Serpientes , Serpientes Venenosas
3.
Toxicon ; 244: 107740, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705487

RESUMEN

Although non-front fanged snakes account for almost two-thirds of snake diversity, most studies on venom composition and evolution focus exclusively on front-fanged species, which comprise most of the clinically relevant accidents. Comprehensive reports on venom composition of non-front fanged snakes are still scarce for several groups. In this study, we address such shortage of knowledge by providing new insights about the venom composition among species of Phalotris, a poorly studied Neotropical dipsadid genus. Phalotris are known for their specialized venom delivery system and toxic venoms, which can cause life-threatening accidents in humans. We evaluate the venom-gland transcriptome of Phalotris, comparing the following three South American species: P. reticulatus for the Araucaria Pine forests, P. lemniscatus for the Pampa grasslands, and P. mertensi for the Brazilian Cerrado. Our results indicate similar venom profiles, in which they share a high expression level of Kunitz-type inhibitors (KUNZ). On the other hand, comparative analyses revealed substantial differences in the expression levels of C-type lectins (CTL) and snake venom metalloproteinases (SVMP). The diverse set of SVMP and CTL isoforms shows signals of positive selection, and we also identified truncated forms of type III SVMPs, which resemble type II and type I SVMPs of viperids. Additionally, we identified a CNP precursor hosting a proline-rich region containing a BPP motif resembling those commonly detected in viperid venoms with hypotensive activity. Altogether, our results suggest an evolutionary history favoring high expression levels of few KUNZ isoforms in Phalotris venoms, contrasting with a highly diverse set of SVMP and CTL isoforms. Such diversity can be comparable with the venom variability observed in some viperids. Our findings highlight the extreme phenotypic diversity of non-front fanged snakes and the importance to allocate greater effort to study neglected groups of Colubroidea.


Asunto(s)
Transcriptoma , Animales , Venenos de Serpiente/genética , Lectinas Tipo C/genética , Brasil , Metaloproteasas/genética
4.
PLoS Negl Trop Dis ; 18(5): e0012187, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38809847

RESUMEN

BACKGROUND: Snakebite envenomation inflicts a high burden of mortality and morbidity in sub-Saharan Africa. Antivenoms are the mainstay in the therapy of envenomation, and there is an urgent need to develop antivenoms of broad neutralizing efficacy for this region. The venoms used as immunogens to manufacture snake antivenoms are normally selected considering their medical importance and availability. Additionally, their ability to induce antibody responses with high neutralizing capability should be considered, an issue that involves the immunization scheme and the animal species being immunized. METHODOLOGY/PRINCIPAL FINDINGS: Using the lethality neutralization assay in mice, we compared the intrageneric neutralization scope of antisera generated by immunization of horses with monospecific, bispecific/monogeneric, and polyspecific/monogeneric immunogens formulated with venoms of Bitis spp., Echis spp., Dendroaspis spp., spitting Naja spp. or non-spitting Naja spp. It was found that the antisera raised by all the immunogens were able to neutralize the homologous venoms and, with a single exception, the heterologous congeneric venoms (considering spitting and non-spitting Naja separately). In general, the polyspecific antisera of Bitis spp, Echis spp, and Dendroaspis spp gave the best neutralization profile against venoms of these genera. For spitting Naja venoms, there were no significant differences in the neutralizing ability between monospecific, bispecific and polyspecific antisera. A similar result was obtained in the case of non-spitting Naja venoms, except that polyspecific antiserum was more effective against the venoms of N. melanoleuca and N. nivea as compared to the monospecific antiserum. CONCLUSIONS/SIGNIFICANCE: The use of polyspecific immunogens is the best alternative to produce monogeneric antivenoms with wide neutralizing coverage against venoms of sub-Saharan African snakes of the Bitis, Echis, Naja (non-spitting) and Dendroaspis genera. On the other hand, a monospecific immunogen composed of venom of Naja nigricollis is suitable to produce a monogeneric antivenom with wide neutralizing coverage against venoms of spitting Naja spp. These findings can be used in the design of antivenoms of wide neutralizing scope for sub-Saharan Africa.


Asunto(s)
Antivenenos , Pruebas de Neutralización , Animales , Caballos/inmunología , Antivenenos/inmunología , Antivenenos/administración & dosificación , Ratones , África del Sur del Sahara , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Venenos de Serpiente/inmunología , Sueros Inmunes/inmunología , Venenos Elapídicos/inmunología , Mordeduras de Serpientes/inmunología
5.
Toxins (Basel) ; 16(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38535794

RESUMEN

Angiogenesis, the formation of new blood vessels, plays a critical role in various physiological and pathological conditions. Snake venom disintegrins (SVDs) have been identified as significant regulators of this process. In this review, we explore the dual roles of SVD in angiogenesis, both as antiangiogenic agents by inhibiting integrin binding and interfering with vascular endothelial growth factors and as proangiogenic agents by enhancing integrin binding, stimulating cell migration and proliferation, and inducing neoangiogenesis. Studies in vitro and in animal models have demonstrated these effects and offer significant therapeutic opportunities. The potential applications of SVD in diseases related to angiogenesis, such as cancer, ocular diseases, tissue regeneration, wound healing, and cardiovascular diseases, are also discussed. Overall, SVDs are promising potential therapeutics, and further advances in this field could lead to innovative treatments for diseases related to angiogenesis.


Asunto(s)
Angiogénesis , Desintegrinas , Animales , Inhibidores de la Angiogénesis , Venenos de Serpiente , Integrinas
6.
Methods Mol Biol ; 2758: 319-329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549022

RESUMEN

Snake venom peptidomes are known to be a large source of molecules with different pharmacological properties. The complexity and variability of snake venoms, the presence of proteinases, and the lack of complete species-specific genome sequences make snake venom peptidome profiling a challenging task that requires especial technical strategies for sample processing and mass spectrometric analysis. Here, we describe a method for assessing the content of snake venom peptides and highlight the importance of sampling procedures, as they substantially influence the peptidomic complexity of snake venoms.


Asunto(s)
Péptidos , Venenos de Serpiente , Venenos de Serpiente/química , Péptidos/química , Espectrometría de Masas , Genoma , Péptido Hidrolasas
7.
Biochem Biophys Res Commun ; 706: 149748, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38460450

RESUMEN

Angiogenesis is a process that is controlled by a delicate combination of proangiogenic and antiangiogenic molecules and can be disrupted in various illnesses, including cancer. Non-cancerous diseases can also have an abnormal or insufficient vascular growth, inflammation and hypoxia, which exacerbate angiogenesis. These conditions include atherosclerosis, psoriasis, endometriosis, asthma, obesity and AIDS. Based on that, the present work assessed the in vitro and ex vivo antiangiogenic properties stemming from BthMP, a P-I metalloproteinase from Bothrops moojeni snake venom, via the VEGF pathway. BthMP at a concentration of 5 and 40 µg/mL showed no toxicity to endothelial cells (HUVEC) in the MTT assay and was not able to induce necrosis and colony proliferation. Interestingly, BthMP inhibited adhesion, migration and invasion of HUVECs in Matrigel and arrested in vitro angiogenesis by reducing the average number of nodules in toxin-treated cells by 9.6 and 17.32 at 5 and 40 µg/mL, respectively, and the number of tubules by 15.9 at 5 µg/mL and 21.6 at 40 µg/mL in a VEGF-dependent way, an essential proangiogenic property. Furthermore, BthMP inhibited the occurrence of the angiogenic process in an ex vivo aortic ring test by decreasing new vessel formation by 52% at 5 µg/mL and by 66% at 40 µg/mL and by increasing the expression of an antiangiogenic gene, SFLT-1, and decreasing the expression of the proangiogenic genes VEGFA and ANGPT-1. Finally, this toxin reduces the production of nitric oxide, a marker that promotes angiogenesis and VEGF modulation, and decreases the protein expression of VEGFA in the supernatant of the HUVEC culture by about 30 %. These results suggest that BthMP has a promising antiangiogenic property and proves to be a biotechnological mechanism for understanding the antiangiogenic responses induced by snake venom metalloproteinases, which could be applied to a variety of diseases that exhibit an imbalance of angiogenesis mechanisms.


Asunto(s)
Bothrops , Células Endoteliales , Serpientes Venenosas , Animales , Femenino , Humanos , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Bothrops/metabolismo , Metaloproteasas/metabolismo , Venenos de Serpiente , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inhibidores de la Angiogénesis/farmacología
8.
Drug Discov Today ; 29(5): 103967, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555033

RESUMEN

Single-domain antibodies (sdAbs) hold promise for developing new biopharmaceuticals to treat neglected tropical diseases (NTDs), including snakebites, which are severe and occur frequently. In addition, limitations of conventional snakebite treatments, especially in terms of local action, and the global antivenom crisis incentivize the use of this biotechnological tool to design next-generation snakebite antivenoms. Conventional antivenoms for snakebite treatment are usually composed of immunoglobulin G or F(ab')2 fragments derived from the plasma of immunized animals. sdAbs, the smallest antigen-binding fragments, are derived from the variable domains of camelid heavy-chain antibodies. sdAbs may have some advantages over conventional antivenoms for local toxicity, such as better penetration into tissues due to their small size, and high solubility and affinity for venom antigens due to their unique antigen-binding loops and ability to access cryptic epitopes. We present an overview of current antivenom therapy in the context of sdAb development for toxin neutralization. Furthermore, strategies are presented for identifying snake venom's major toxins as well as for developing antisnake toxin sdAbs by employing proteomic tools for toxin neutralization.


Asunto(s)
Antivenenos , Proteómica , Anticuerpos de Dominio Único , Mordeduras de Serpientes , Venenos de Serpiente , Animales , Humanos , Antivenenos/inmunología , Proteómica/métodos , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacología , Mordeduras de Serpientes/tratamiento farmacológico , Mordeduras de Serpientes/inmunología , Venenos de Serpiente/inmunología
9.
J Nat Prod ; 87(4): 820-830, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38449376

RESUMEN

Snake venoms contain various bradykinin-potentiating peptides (BPPs). First studied for their vasorelaxant properties due to angiotensin converting enzyme (ACE) inhibition, these molecules present a range of binding partners, among them the argininosuccinate synthase (AsS) enzyme. This has renewed interest in their characterization from biological sources and the evaluation of their pharmacological activities. In the present work, the low molecular weight fraction of Bothrops moojeni venom was obtained and BPPs were characterized by mass spectrometry. Eleven BPPs or related peptides were sequenced, and one of them, BPP-Bm01, was new. Interestingly, some oxidized BPPs were detected. The three most abundant peptides were BPP-Bm01, BPP-Bax12, and BPP-13a, and their putative interactions with the AsS enzyme were investigated in silico. A binding cavity for these molecules was predicted, and docking studies allowed their ranking. Three peptides were synthesized and submitted to vasorelaxation assays using rat aortic rings. While all BPPs were active, BPP-Bm01 showed the highest potency in this assay. This work adds further diversity to BPPs from snake venoms and suggests, for the first time, a putative binding pocket for these molecules in the AsS enzyme. This can guide the design of new and more potent AsS activators.


Asunto(s)
Aorta , Bothrops , Oligopéptidos , Péptidos , Serpientes Venenosas , Animales , Ratas , Brasil , Aorta/efectos de los fármacos , Péptidos/farmacología , Péptidos/química , Bradiquinina/farmacología , Masculino , Venenos de Crotálidos/farmacología , Venenos de Crotálidos/química , Ratas Wistar , Venenos de Serpiente/farmacología , Vasodilatadores/farmacología , Vasodilatadores/química , Estructura Molecular
10.
Toxins (Basel) ; 16(2)2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38393182

RESUMEN

Snakebite accident treatment requires the administration of antivenoms that provide efficacy and effectiveness against several snake venoms of the same genus or family. The low number of immunogenic components in venom mixtures that allow the production of antivenoms consequently gives them partial neutralization and a suboptimal pharmacological response. This study evaluates the immunorecognition and neutralizing efficacy of the polyvalent anticoral antivenom from the Instituto Nacional de Salud (INS) of Colombia against the heterologous endemic venoms of Micrurus medemi, and M. sangilensis, and M. helleri by assessing immunoreactivity through affinity chromatography, ELISA, Western blot, and neutralization capability. Immunorecognition towards the venoms of M. medemi and M. sangilensis showed values of 62% and 68% of the protein composition according to the immunoaffinity matrix, respectively. The analysis by Western blot depicted the highest recognition patterns for M. medemi, followed by M. sangilensis, and finally by M. helleri. These findings suggest that the venom compositions are closely related and exhibit similar recognition by the antivenom. According to enzyme immunoassays, M. helleri requires a higher amount of antivenom to achieve recognition than the others. Besides reinforcing the evaluation of INS antivenom capability, this work recommends the use of M. helleri in the production of Colombian antisera.


Asunto(s)
Antivenenos , Serpientes de Coral , Animales , Serpientes de Coral/metabolismo , Colombia , Venenos Elapídicos/química , Venenos de Serpiente/química
11.
Biochimie ; 216: 90-98, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37839625

RESUMEN

Snake venoms are primarily composed of proteins and peptides, which selectively interact with specific molecular targets, disrupting prey homeostasis. Identifying toxins and the mechanisms involved in envenoming can lead to the discovery of new drugs based on natural peptide scaffolds. In this study, we used mass spectrometry-based peptidomics to sequence 197 peptides in the venom of Bothrops cotiara, including a novel 7-residue peptide derived from a snake venom metalloproteinase. This peptide, named Bc-7a, features a pyroglutamic acid at the N-terminal and a PFR motif at the C-terminal, homologous to bradykinin. Using FRET (fluorescence resonance energy transfer) substrate assays, we demonstrated that Bc-7a strongly inhibits the two domains of angiotensin converting enzyme (Ki < 1 µM). Our findings contribute to the repertoire of biologically active peptides from snake venoms capable of inhibiting angiotensin-converting enzyme (ACE), beyond current known structural motifs and precursors. In summary, we report a novel snake venom peptide with ACE inhibitory activity, suggesting its potential contribution to the hypotensive effect observed in envenomation.


Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Venenos de Crotálidos/química , Péptidos/química , Venenos de Serpiente/química , Bothrops/metabolismo , Metaloproteasas , Angiotensinas/metabolismo
12.
Toxicon ; 238: 107568, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38110040

RESUMEN

Most anti-inflammatory drugs currently adopted to treat chronic inflammatory joint diseases can alleviate symptoms but they do not lead to remission. Therefore, new and more efficient drugs are needed to block the course of joint inflammatory diseases. Animal venoms, rich in bioactive compounds, can contribute as valuable tools in this field of research. In this study, we first demonstrate the direct action of venoms on cells that constitute the articular joints. We established a platform consisting of cell-based assays to evaluate the release of cytokines (IL-6, IL-8, TNFα, IL-1ß, and IL-10) by human chondrocytes, synoviocytes and THP1 macrophages, as well as the release of neuropeptides (substance-P and ß-endorphin) by differentiated sensory neuron-like cells, 24 h after stimulation of cells with 21 animal venoms from snake and arthropod species, sourced from different taxonomic families and geographic origins. Results demonstrated that at non-cytotoxic concentrations, the venoms activate at varying degrees the secretion of inflammatory mediators involved in the pathology of articular diseases, such as IL-6, IL-8, and TNF-α by chondrocytes, synoviocytes, and macrophages and of substance P by neuron-like cells. Venoms of the Viperidae snake family were more inflammatory than those of the Elapidae family, while venoms of Arthropods were less inflammatory than snake venoms. Notably, some venoms also induced the release of the anti-inflammatory IL-10 by macrophages. However, the scorpion Buthus occitanus venom induced the release of IL-10 without increasing the release of inflammatory cytokines by macrophages. Since the cell types used in the experiments are crucial elements in joint inflammatory processes, the results of this work may guide future research on the activation of receptors and inflammatory signaling pathways by selected venoms in these particular cells, aiming at discovering new targets for therapeutic intervention.


Asunto(s)
Animales Ponzoñosos , Venenos de Artrópodos , Artrópodos , Artropatías , Venenos de Escorpión , Escorpiones , Viperidae , Animales , Humanos , Interleucina-10 , Interleucina-6 , Interleucina-8 , Venenos de Serpiente/química , Citocinas , Factor de Necrosis Tumoral alfa , Antiinflamatorios
13.
Toxicon ; 238: 107569, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38122835

RESUMEN

The present work addressed the abilities of two L-amino acid oxidases isolated from Bothrops moojeni (BmooLAAO-I) and Bothrops jararacussu (BjussuLAAO-II) snake venoms to control the growth and prevent the biofilm formation of clinically relevant bacterial pathogens. Upon S. aureus (ATCC BAA44) and S. aureus (clinical isolates), BmooLAAO-I (MIC = 0.12 and 0.24 µg/mL, respectively) and BjussuLAAO-II (MIC = 0.15 µg/mL) showed a potent bacteriostatic effect. Against E. coli (ATCC BAA198) and E. coli (clinical isolates), BmooLAAO-I (MIC = 15.6 and 62.5 µg/mL, respectively) and BjussuLAAO-II (MIC = 4.88 and 9.76 µg/mL, respectively) presented a lower extent effect. Also, BmooLAAO-I (MICB50 = 0.195 µg/mL) and BjussuLAAO-II (MICB50 = 0.39 µg/mL) inhibited the biofilm formation of S. aureus (clinical isolates) in 88% and 89%, respectively, and in 89% and 53% of E. coli (clinical isolates). Moreover, scanning electron microscopy confirmed that the toxins affected bacterial morphology by increasing the roughness of the cell surface and inhibited the biofilm formation. Furthermore, analysis of the tridimensional structures of the toxins showed that the surface-charge distribution presents a remarkable positive region close to the glycosylation motif, which is more pronounced in BmooLAAO-I than BjussuLAAO-II. This region may assist the interaction with bacterial and biofilm surfaces. Collectively, our findings propose that venom-derived antibiofilm agents are promising biotechnological tools which could provide novel strategies for biofilm-associated infections.


Asunto(s)
Bothrops , Venenos de Crotálidos , Serpientes Venenosas , Animales , Venenos de Crotálidos/toxicidad , L-Aminoácido Oxidasa/farmacología , L-Aminoácido Oxidasa/química , Staphylococcus aureus , Escherichia coli , Venenos de Serpiente/química , Bacterias , Biopelículas
14.
Toxins (Basel) ; 15(11)2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37999485

RESUMEN

Little is known of the biochemical composition and functional features of the venoms of poorly known Colombian coral snakes. Here, we provide a preliminary characterization of the venom of two Colombian endemic coral snake species, Micrurus medemi and M. sangilensis, as well as Colombian populations of M. helleri. Electrophoresis and RP-HPLC techniques were used to identify venom components, and assays were conducted to detect enzyme activities, including phospholipase A2, hyaluronidase, and protease activities. The median lethal dose was determined using murine models. Cytotoxic activities in primary cultures from hippocampal neurons and cancer cell lines were evaluated. The venom profiles revealed similarities in electrophoretic separation among proteins under 20 kDa. The differences in chromatographic profiles were significant, mainly between the fractions containing medium-/large-sized and hydrophobic proteins; this was corroborated by a proteomic analysis which showed the expected composition of neurotoxins from the PLA2 (~38%) and 3FTx (~17%) families; however, a considerable quantity of metalloproteinases (~12%) was detected. PLA2 activity and protease activity were higher in M. helleri venom according to qualitative and quantitative assays. M. medemi venom had the highest lethality. All venoms decreased cell viability when tested on tumoral cell cultures, and M. helleri venom had the highest activity in neuronal primary culture. These preliminary studies shed light on the venoms of understudied coral snakes and broaden the range of sources that could be used for subsequent investigations of components with applications to specific diseases. Our findings also have implications for the clinical manifestations of snake envenoming and improvements in its medical management.


Asunto(s)
Serpientes de Coral , Mordeduras de Serpientes , Humanos , Animales , Ratones , Serpientes de Coral/metabolismo , Venenos Elapídicos/química , Antivenenos/metabolismo , Colombia , Proteómica , Venenos de Serpiente/metabolismo , Fosfolipasas A2/química , Péptido Hidrolasas/metabolismo , Elapidae/metabolismo
15.
Toxins (Basel) ; 15(11)2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37999488

RESUMEN

L-Amino acid oxidase (LAAO) is an enzyme found in snake venom that has multifaceted effects, including the generation of hydrogen peroxide (H2O2) during oxidative reactions, leading to various biological and pharmacological outcomes such as apoptosis, cytotoxicity, modulation of platelet aggregation, hemorrhage, and neutrophil activation. Human neutrophils respond to LAAO by enhancing chemotaxis, and phagocytosis, and releasing reactive oxygen species (ROS) and pro-inflammatory mediators. Exosomes cellular nanovesicles play vital roles in intercellular communication, including immune responses. This study investigates the impact of Calloselasma rhodostoma snake venom-derived LAAO (Cr-LAAO) on human neutrophil exosome release, including activation patterns, exosome formation, and content. Neutrophils isolated from healthy donors were stimulated with Cr-LAAO (100 µg/mL) for 3 h, followed by exosome isolation and analysis. Results show that Cr-LAAO induces the release of exosomes with distinct protein content compared to the negative control. Proteomic analysis reveals proteins related to the regulation of immune responses and blood coagulation. This study uncovers Cr-LAAO's ability to activate human neutrophils, leading to exosome release and facilitating intercellular communication, offering insights into potential therapeutic approaches for inflammatory and immunological disorders.


Asunto(s)
Exosomas , L-Aminoácido Oxidasa , Humanos , L-Aminoácido Oxidasa/farmacología , L-Aminoácido Oxidasa/metabolismo , Neutrófilos , Exosomas/metabolismo , Peróxido de Hidrógeno/farmacología , Proteómica , Venenos de Serpiente
16.
Toxins (Basel) ; 15(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37999502

RESUMEN

Snakebite envenomation (SBE)-induced immunity refers to individuals who have been previously bitten by a snake and developed a protective immune response against subsequent envenomations. The notion stems from observations of individuals, including in the indigenous population, who present only mild signs and symptoms after surviving multiple SBEs. Indeed, these observations have engendered scientific interest and prompted inquiries into the potential development of a protective immunity from exposure to snake toxins. This review explores the evidence of a protective immune response developing following SBE. Studies suggest that natural exposure to snake toxins can trigger protection from the severity of SBEs, mediated by specific antibodies. However, the evaluation of the immune memory response in SBE patients remains challenging. Further research is needed to elucidate the immune response dynamics and identify potential targets for therapeutic interventions. Furthermore, the estimation of the effect of previous exposures on SBE epidemiology in hyperendemic areas, such as in the indigenous villages of the Amazon region (e.g., the Yanomami population) is a matter of debate.


Asunto(s)
Mordeduras de Serpientes , Toxinas Biológicas , Animales , Humanos , Mordeduras de Serpientes/tratamiento farmacológico , Antivenenos/uso terapéutico , Serpientes , Toxinas Biológicas/uso terapéutico , Venenos de Serpiente/uso terapéutico
17.
Toxins (Basel) ; 15(11)2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37999511

RESUMEN

Snakebite envenoming is one of the most significantly neglected tropical diseases in the world. The lack of diagnosis/prognosis methods for snakebite is one of our motivations to develop innovative technological solutions for Brazilian health. The objective of this work was to evaluate the protein and metallic ion composition of Crotalus durissus terrificus, Bothrops jararaca, B. alternatus, B. jararacussu, B. moojeni, B. pauloensis, and Lachesis muta muta snake venoms. Brazilian snake venoms were subjected to the shotgun proteomic approach using mass spectrometry, and metal ion analysis was performed by atomic spectrometry. Shotgun proteomics has shown three abundant toxin classes (PLA2, serine proteases, and metalloproteinases) in all snake venoms, and metallic ions analysis has evidenced that the Cu2+ ion is present exclusively in the L. m. muta venom; Ca2+ and Mg2+ ions have shown a statistical difference between the species of Bothrops and Crotalus genus, whereas the Zn2+ ion presented a statistical difference among all species studied in this work. In addition, Mg2+ ions have shown 42 times more in the C. d. terrificus venom when compared to the average concentration in the other genera. Though metal ions are a minor fraction of snake venoms, several venom toxins depend on them. We believe that these non-protein fractions are capable of assisting in the development of unprecedented diagnostic devices for Brazilian snakebites.


Asunto(s)
Bothrops , Venenos de Crotálidos , Mordeduras de Serpientes , Animales , Mordeduras de Serpientes/diagnóstico , Brasil , Proteómica , Venenos de Serpiente , Iones , Venenos de Crotálidos/química
18.
Toxins (Basel) ; 15(11)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37999521

RESUMEN

Colombia encompasses three mountain ranges that divide the country into five natural regions: Andes, Pacific, Caribbean, Amazon, and Orinoquia. These regions offer an impressive range of climates, altitudes, and landscapes, which lead to a high snake biodiversity. Of the almost 300 snake species reported in Colombia, nearly 50 are categorized as venomous. This high diversity of species contrasts with the small number of studies to characterize their venom compositions and natural history in the different ecoregions. This work reviews the available information about the venom composition, isolated toxins, and potential applications of snake species found in Colombia. Data compilation was conducted according to the PRISMA guidelines, and the systematic literature search was carried out in Pubmed/MEDLINE. Venom proteomes from nine Viperidae and three Elapidae species have been described using quantitative analytical strategies. In addition, venoms of three Colubridae species have been studied. Bioactivities reported for some of the venoms or isolated components-such as antibacterial, cytotoxicity on tumoral cell lines, and antiplasmodial properties-may be of interest to develop potential applications. Overall, this review indicates that, despite recent progress in the characterization of venoms from several Colombian snakes, it is necessary to perform further studies on the many species whose venoms remain essentially unexplored, especially those of the poorly known genus Micrurus.


Asunto(s)
Serpientes de Coral , Toxinas Biológicas , Animales , Colombia , Venenos de Serpiente/toxicidad , Venenos de Serpiente/metabolismo , Elapidae/metabolismo , Toxinas Biológicas/metabolismo , Serpientes de Coral/metabolismo , Venenos Elapídicos/toxicidad , Venenos Elapídicos/metabolismo
19.
Int J Biol Macromol ; 253(Pt 6): 127279, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37806411

RESUMEN

Snakebite envenomation is classified as a Neglected Tropical Disease. Bothrops jararaca venom induces kidney injury and coagulopathy. HF3, a hemorrhagic metalloproteinase of B. jararaca venom, participates in the envenomation pathogenesis. We evaluated the effects of HF3 in mouse kidney and blood plasma after injection in the thigh muscle, mimicking a snakebite. Transcriptomic analysis showed differential expression of 31 and 137 genes related to kidney pathology after 2 h and 6 h, respectively. However, only subtle changes were observed in kidney proteome, with differential abundance of 15 proteins after 6 h, including kidney injury markers. N-terminomic analysis of kidney proteins showed 420 proteinase-generated peptides compatible with meprin specificity, indicating activation of host proteinases. Plasma analysis revealed differential abundance of 90 and 219 proteins, respectively, after 2 h and 6 h, including coagulation-cascade and complement-system components, and creatine-kinase, whereas a semi-specific search of N-terminal peptides indicated activation of endogenous proteinases. HF3 promoted host reactions, altering the gene expression and the proteolytic profile of kidney tissue, and inducing plasma proteome imbalance driven by changes in abundance and proteolysis. The overall response of the mouse underscores the systemic action of a hemorrhagic toxin that transcends local tissue damage and is related to known venom-induced systemic effects.


Asunto(s)
Bothrops , Venenos de Crotálidos , Ratones , Animales , Proteoma , Multiómica , Metaloproteasas/metabolismo , Venenos de Serpiente/toxicidad , Péptidos , Plasma/metabolismo , Riñón/metabolismo , Bothrops/metabolismo , Venenos de Crotálidos/toxicidad , Venenos de Crotálidos/metabolismo
20.
Biochem Biophys Res Commun ; 683: 149090, 2023 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-37862779

RESUMEN

Snake venoms are known to be major sources of peptides with different pharmacological properties. In this study, we comprehensively explored the venom peptidomes of three specimens of Lachesismuta, the largest venomous snake in South America, using mass spectrometry techniques. The analysis revealed 19 main chromatographic peaks common to all specimens. A total of 151 peptides were identified, including 69 from a metalloproteinase, 58 from the BPP-CNP precursor, and 24 from a l-amino acid oxidase. To our knowledge, 126 of these peptides were reported for the first time in this work, including a new SVMP-derived peptide fragment, Lm-10a. Our findings highlight the dynamic nature of toxin maturation in snake venoms, driven by proteolytic processing, post-translational modifications, and cryptide formation.


Asunto(s)
Bradiquinina , L-Aminoácido Oxidasa , L-Aminoácido Oxidasa/química , Péptidos/química , Venenos de Serpiente , Metaloproteasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA