Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Intervalo de año de publicación
1.
PLoS One ; 13(10): e0205348, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30296290

RESUMEN

Synaptic vesicles (SVs) are a key component of neuronal signaling and fulfil different roles depending on their composition. In electron micrograms of neurites, two types of vesicles can be distinguished by morphological criteria, the classical "clear core" vesicles (CCV) and the typically larger "dense core" vesicles (DCV), with differences in electron density due to their diverse cargos. Compared to CCVs, the precise function of DCVs is less defined. DCVs are known to store neuropeptides, which function as neuronal messengers and modulators [1]. In C. elegans, they play a role in locomotion, dauer formation, egg-laying, and mechano- and chemosensation [2]. Another type of DCVs, also referred to as granulated vesicles, are known to transport Bassoon, Piccolo and further constituents of the presynaptic density in the center of the active zone (AZ), and therefore are important for synaptogenesis [3]. To better understand the role of different types of SVs, we present here a new automated approach to classify vesicles. We combine machine learning with an extension of our previously developed vesicle segmentation workflow, the ImageJ macro 3D ART VeSElecT. With that we reliably distinguish CCVs and DCVs in electron tomograms of C. elegans NMJs using image-based features. Analysis of the underlying ground truth data shows an increased fraction of DCVs as well as a higher mean distance between DCVs and AZs in dauer larvae compared to young adult hermaphrodites. Our machine learning based tools are adaptable and can be applied to study properties of different synaptic vesicle pools in electron tomograms of diverse model organisms.


Asunto(s)
Neuronas/metabolismo , Vesículas Secretoras/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Axones/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Aprendizaje Automático , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Neuropéptidos/metabolismo , Transporte de Proteínas , Vesículas Secretoras/clasificación , Vesículas Sinápticas/clasificación , Vesículas Sinápticas/genética
2.
J Neurosci ; 36(11): 3222-30, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26985032

RESUMEN

Synaptic transmission between neurons requires precise management of synaptic vesicles. While individual molecular components of the presynaptic terminal are well known, exactly how the molecules are organized into a molecular machine serving the storage and mobilization of synaptic vesicles to the active zone remains unclear. Here we report three filament types associated with synaptic vesicles in glutamatergic synapses revealed by electron microscope tomography in unstimulated, dissociated rat hippocampal neurons. One filament type, likely corresponding to the SNAREpin complex, extends from the active zone membrane and surrounds docked vesicles. A second filament type contacts all vesicles throughout the active zone and pairs vesicles together. On the third filament type, vesicles attach to side branches extending from the long filament core and form vesicle clusters that are distributed throughout the vesicle cloud and along the active zone membrane. Detailed analysis of presynaptic structure reveals how each of the three filament types interacts with synaptic vesicles, providing a means to traffic reserved and recycled vesicles from the cloud of vesicles into the docking position at the active zone. SIGNIFICANCE STATEMENT: The formation and release of synaptic vesicles has been extensively investigated. Explanations of the release of synaptic vesicles generally begin with the movement of vesicles from the cloud into the synaptic active zone. However, the presynaptic terminal is filled with filamentous material that would appear to limit vesicular diffusion. Here, we provide a systematic description of three filament types connecting synaptic vesicles. A picture emerges illustrating how the cooperative attachment and release of these three filament types facilitate the movement of vesicles to the active zone to become docked in preparation for release.


Asunto(s)
Neuronas/citología , Sinapsis/ultraestructura , Vesículas Sinápticas/clasificación , Vesículas Sinápticas/fisiología , Animales , Células Cultivadas , Citoesqueleto/ultraestructura , Tomografía con Microscopio Electrónico , Embrión de Mamíferos , Técnica de Fractura por Congelación , Hipocampo/citología , Imagenología Tridimensional , Simulación del Acoplamiento Molecular , Ratas , Proteínas SNARE/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/ultraestructura
3.
J Physiol ; 594(4): 825-35, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26614712

RESUMEN

Synaptic communication between neurons is a highly dynamic process involving specialized structures. At the level of the presynaptic terminal, neurotransmission is ensured by fusion of vesicles to the membrane, which releases neurotransmitter in the synaptic cleft. Depending on the level of activity experienced by the terminal, the spatiotemporal properties of calcium invasion will dictate the timing and the number of vesicles that need to be released. Diverse presynaptic firing patterns are translated to neurotransmitter release with a distinct temporal feature. Complex patterns of neurotransmitter release can be achieved when different vesicles respond to distinct calcium dynamics in the presynaptic terminal. Specific vesicles from different pools are recruited during various modes of release as the particular molecular composition of their membrane proteins define their functional properties. Such diversity endows the presynaptic terminal with the ability to respond to distinct physiological signals via the mobilization of specific subpopulation of vesicles. There are several mechanisms by which a diverse vesicle population could be generated in single presynaptic terminals, including distinct recycling pathways that utilize various adaptor proteins. Several additional factors could potentially contribute to the development of a heterogeneous vesicle pool such as specialized release sites, spatial segregation within the terminal and specialized delivery pathways. Among these factors molecular heterogeneity plays a central role in defining the functional properties of different subpopulations of vesicles.


Asunto(s)
Transmisión Sináptica , Vesículas Sinápticas/metabolismo , Animales , Calcio/metabolismo , Exocitosis , Humanos , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Vesículas Sinápticas/clasificación , Vesículas Sinápticas/fisiología
4.
Cold Spring Harb Perspect Biol ; 4(8): a013680, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22745285

RESUMEN

Synaptic vesicles release neurotransmitter at chemical synapses, thus initiating the flow of information in neural networks. To achieve this, vesicles undergo a dynamic cycle of fusion and retrieval to maintain the structural and functional integrity of the presynaptic terminals in which they reside. Moreover, compelling evidence indicates these vesicles differ in their availability for release and mobilization in response to stimuli, prompting classification into at least three different functional pools. Ongoing studies of the molecular and cellular bases for this heterogeneity attempt to link structure to physiology and clarify how regulation of vesicle pools influences synaptic strength and presynaptic plasticity. We discuss prevailing perspectives on vesicle pools, the role they play in shaping synaptic transmission, and the open questions that challenge current understanding.


Asunto(s)
Modelos Biológicos , Red Nerviosa/metabolismo , Neurotransmisores/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/clasificación , Vesículas Sinápticas/fisiología , Animales , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes , Compuestos de Piridinio , Puntos Cuánticos , Compuestos de Amonio Cuaternario , Vesículas Sinápticas/metabolismo
5.
J Neurosci ; 32(16): 5398-413, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22514304

RESUMEN

BDNF plays a critical role in the regulation of synaptic strength and is essential for long-term potentiation, a phenomenon that underlies learning and memory. However, whether BDNF acts in a diffuse manner or is targeted to specific neuronal subcompartments or synaptic sites to affect circuit function remains unknown. Here, using photoactivation of BDNF or syt-IV (a regulator of exocytosis present on BDNF-containing vesicles) in transfected rat hippocampal neurons, we discovered that distinct subsets of BDNF vesicles are targeted to axons versus dendrites and are not shared between these compartments. Moreover, syt-IV- and BDNF-harboring vesicles are recruited to both presynaptic and postsynaptic sites in response to increased neuronal activity. Finally, using syt-IV knockout mouse neurons, we found that syt-IV is necessary for both presynaptic and postsynaptic scaling of synaptic strength in response to changes in network activity. These findings demonstrate that BDNF-containing vesicles can be targeted to specific sites in neurons and suggest that syt-IV-regulated BDNF secretion is subject to spatial control to regulate synaptic function in a site-specific manner.


Asunto(s)
Axones/metabolismo , Dendritas/metabolismo , Neuronas/citología , Vesículas Sinápticas/clasificación , Vesículas Sinápticas/metabolismo , Sinaptotagminas/metabolismo , Molécula de Adhesión Celular del Leucocito Activado/metabolismo , Animales , Animales Recién Nacidos , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Colforsina/farmacología , Homólogo 4 de la Proteína Discs Large , Embrión de Mamíferos , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Femenino , Glicina/farmacología , Hipocampo/citología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas , Receptores AMPA/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Sinapsis/fisiología , Sinaptofisina/metabolismo , Sinaptotagminas/deficiencia , Tetrodotoxina/farmacología , Factores de Tiempo , Transfección , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
6.
Braz. j. pharm. sci ; 48(1): 155-161, Jan.-Mar. 2012. ilus, graf
Artículo en Inglés | LILACS | ID: lil-622899

RESUMEN

The purpose of the present work was to investigate synaptic vesicle trafficking when vesicles exhibit alterations in filling and acidification in two different synapses: a cholinergic frog neuromuscular junction and a glutamatergic ribbon-type nerve terminal in the retina. These synapses display remarkable structural and functional differences, and the mechanisms regulating synaptic vesicle cycling might also differ between them. The lipophilic styryl dye FM1-43 was used to monitor vesicle trafficking. Both preparations were exposed to pharmacological agents that collapse ΔpH (NH4Cl and methylamine) or the whole ΔµH+ (bafilomycin), a necessary situation to provide the driving force for neurotransmitter accumulation into synaptic vesicles. The results showed that FM1-43 loading and unloading in neuromuscular junctions did not differ statistically between control and experimental conditions (P > 0.05). Also, FM1-43 labeling in bipolar cell terminals proved highly similar under all conditions tested. Despite remarkable differences in both experimental models, the present findings show that acidification and filling are not required for normal vesicle trafficking in either synapse.


O objetivo do presente trabalho foi investigar o tráfego de vesículas sinápticas quando estas apresentam alterações no armazenamento de neurotransmissores e acidificação em duas distintas sinapses: a junção neuromuscular colinérgica de rãs versus o terminal nervoso glutamatérgico do tipo ribbon em céulas bipolares da retina. Essas sinapses exibem notáveis diferenças estruturais e funcionais e os mecanismos de regulação de ciclo das vesículas sinápticas podem ser diferentes entre eles. Para monitorar o tráfego de vesícula, foi utilizado o marcador lipofílico FM1-43. Ambas as preparações foram expostas a agentes farmacológicos que provocam o colapso de ΔpH (NH4Cl e metilamina) ou de todo ΔµH+ (bafilomicina), gradientes necessários para o acúmulo de neurotransmissores em vesículas sinápticas. Nossos resultados demonstram que a marcação e desmarcação de FM1-43 nas junções neuromusculares não foi estatisticamente diferente entre as diversas condições experimentais (P > 0,05). Além disso, a marcação de FM1-43 em terminais sinápticos de células bipolares foram bastante semelhantes em todas as condições testadas. Apesar das diferenças marcantes em ambos os modelos experimentais, nossos achados demonstram que a acidificação e o preenchimento de vesículas sinápticas não são necessários para o tráfico normal da vesícula nas sinapses estudadas.


Asunto(s)
Sinapsis/metabolismo , Vesículas Sinápticas/clasificación , Acidificación/análisis , Células Bipolares de la Retina/clasificación
7.
J Neurophysiol ; 97(6): 4048-57, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17392409

RESUMEN

We previously demonstrated that the tergotrochanteral muscle (TTM) of Drosophila is innervated by unique synapses that possess a small readily releasable/recycling vesicle population (active zone population), but not the larger reserve vesicle population observed at other neuromuscular junctions in this animal. Using light and electron microscopic techniques and intracellular recording from the G1 muscle fiber of the TTM, the release and recycling characteristics of the readily releasable/recycling population were observed without any possible contribution from a reserve population. Our results indicate 1) the total number of vesicles in synapses presynaptic to the G1 fiber correlates with the total number of quanta that can be released onto this fiber; 2) the number of quanta released by a single action potential onto the G1 fiber is about one half the number of morphologically "docked" vesicles in active zones onto the G1, and this ratio decreases in a partially depleted state; 3) the recycling rate at 1-Hz stimulation, a frequency that does not cause any depression, is 0.24 recycled vesicle/active zone/s; and 4) normal-appearing spontaneous release occurs from the active zone vesicle population and, unlike synapses that possess a reserve population, the frequency of this release is reduced after high-frequency evoked activity.


Asunto(s)
Músculos/inervación , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster , Dinaminas/genética , Estimulación Eléctrica/métodos , Femenino , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Microscopía Electrónica/métodos , Modelos Biológicos , Músculos/ultraestructura , Transmisión Sináptica/efectos de la radiación , Vesículas Sinápticas/clasificación , Vesículas Sinápticas/efectos de la radiación , Vesículas Sinápticas/ultraestructura
8.
J Physiol ; 568(Pt 2): 413-21, 2005 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16123101

RESUMEN

At a variety of fast chemical synapses, spent synaptic vesicles are recycled via a large 'reserve' vesicle pool at high stimulus frequencies, and via fast 'local cycling' near release sites (e.g. 'kiss and run' transmitter release) at low stimulus frequencies. We have investigated recycling at the snake neuromuscular junction (NMJ), specifically seeking evidence for local cycling. Activity-dependent staining and destaining of the endocytic probe FM1-43 were directly compared to transmitter release over a range of stimulus frequencies. We found a fixed proportionality between staining/destaining and summed endplate potentials (EPPs) representing total transmitter release. There was no direct dependence of staining or destaining on stimulus frequency, as would be expected if local cycling (and consequent altered FM1-43 retention) were more prevalent at one frequency than another. In other experiments the drug vesamicol was used to abolish refilling of vesicles with transmitter, thereby blocking EPPs contributed by recycled vesicles. Control and vesamicol-treated NMJs had identical quantal content for the first 10 min of 1 Hz stimulation. Afterwards EPP amplitudes at vesamicol-treated NMJs declined at a rate consistent with use of a large pool containing approximately 130,000 vesicles. Finally, calibrated paired stimulations show that regenerated vesicles have poorer than random probability of re-release. Our findings are inconsistent with local cycling and suggest that the snake motor terminal utilizes exclusively a single large vesicle pool.


Asunto(s)
Unión Neuromuscular/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Animales , Colubridae , Estimulación Eléctrica , Colorantes Fluorescentes , Técnicas In Vitro , Fármacos Neuromusculares Despolarizantes/farmacología , Unión Neuromuscular/efectos de los fármacos , Piperidinas/farmacología , Compuestos de Piridinio , Compuestos de Amonio Cuaternario , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/clasificación , Factores de Tiempo
9.
J Neurophysiol ; 94(3): 2111-9, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15958601

RESUMEN

We have previously demonstrated that Drosophila synapses possess two vesicle populations-a small active zone population replenished by "fast" recycling and a much larger reserve population replenished by a slower recycling mechanism that includes endosomal intermediates. In this paper, we demonstrate that the synapses onto the tergotrochanteral muscle (TTM) are very unusual in that they possess only the active zone vesicle population but not the reserve population. The depression characteristics to repetitive stimulation of the TTM were compared with those of the dorsal longitudinal muscle (DLM), the synapses of which possess both an active zone and a reserve population. It was observed that the TTM response depressed more quickly than that of the DLM. To further explore the possible contribution of the reserve population to release, using the shibire mutant, DLM synapses were experimentally constructed that possess only the active zone population, and their depression characteristics were compared with those of the same synapses possessing both populations. It was observed that responses from DLM synapses possessing only the active zone population depressed more quickly than the same synapses possessing both populations. These experiments were conducted under conditions of blocked recycling so that the difference in stimulation tolerance represents the contribution of the reserve population to release. Furthermore, the depression curve of the DLM synapses lacking a reserve population now closely approximated that of the TTM synapses. These data suggest that the reserve vesicle population of DLM synapses may contribute to transmitter release during repetitive firing at physiological frequencies (5-10 Hz).


Asunto(s)
Músculos/inervación , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología , Animales , Relación Dosis-Respuesta en la Radiación , Drosophila , Estimulación Eléctrica/métodos , Femenino , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Microscopía Electrónica de Transmisión/métodos , Músculos/ultraestructura , Inhibición Neural/fisiología , Inhibición Neural/efectos de la radiación , Sinapsis/efectos de la radiación , Sinapsis/ultraestructura , Transmisión Sináptica/efectos de la radiación , Vesículas Sinápticas/clasificación , Vesículas Sinápticas/efectos de la radiación , Vesículas Sinápticas/ultraestructura
10.
Neuron ; 46(6): 869-78, 2005 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-15953416

RESUMEN

Synaptic vesicles can be retrieved rapidly or slowly, but the molecular basis of these kinetic differences has not been defined. We now show that substantially different sets of molecules mediate fast and slow endocytosis in the synaptic terminal of retinal bipolar cells. Capacitance measurements of membrane retrieval were made in terminals in which peptides and protein domains were introduced to disrupt known interactions of clathrin, the AP2 adaptor complex, and amphiphysin. All these manipulations caused a selective inhibition of the slow phase of membrane retrieval (time constant approximately 10 s), leaving the fast phase (approximately 1 s) intact. Slow endocytosis after strong stimulation was therefore dependent on the formation of clathrin-coated membrane. Fast endocytosis occurring after weaker stimuli retrieves vesicle membrane in a clathrin-independent manner. All compensatory endocytosis required GTP hydrolysis, but only a subset of released vesicles were primed for fast, clathrin-independent endocytosis.


Asunto(s)
Clatrina/metabolismo , Endocitosis/fisiología , Neuronas/citología , Retina/citología , Vesículas Sinápticas/clasificación , Vesículas Sinápticas/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Adenosina Trifosfato/farmacología , Animales , Western Blotting/métodos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Dinaminas/metabolismo , Capacidad Eléctrica , Endocitosis/efectos de los fármacos , Carpa Dorada , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacología , Hidrólisis/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Técnicas de Placa-Clamp/métodos , Fragmentos de Péptidos/farmacología , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Ratas , Proteínas Recombinantes/farmacología , Retina/metabolismo , Factores de Tiempo
11.
Neurosci Res ; 49(2): 241-52, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15140566

RESUMEN

We analyzed the laminar distribution of synaptic boutons in field CA3 of the rat hippocampus using a large montage electron micrograph. The size of boutons and synaptic vesicles was measured using a computer-assisted digitizing system. In all, 3353 synaptic boutons were observed in a 15 microm x 100 microm strip. Of these, 86.3% contained spherical vesicles (S-boutons), 12% contained flat vesicles (F-boutons), and 1.7% were mossy terminals (M-boutons). S-boutons were distributed widely in the strata moleculare (st. Mol), radiatum (st. Rad), and oriens (st. Ori), but there were only a few in the strata lucidum (st. Luc) and pyramidale (st. Pyr). The upper portions of both the st. Rad and Ori contained slightly fewer boutons. In terms of the location of synaptic contacts, 83% of all S-boutons were found on the dendritic spines and the rest were on the dendritic shafts. S-boutons on the dendritic shafts were observed more frequently in the st. Mol than in the other strata. According to the morphometry of the size of synaptic vesicles, S-boutons with small vesicles (mean vesicle area <1109 nm(2)) were located exclusively in the st. Mol, S-boutons with medium-sized vesicles (mean vesicle area 1109-1482 nm(2)) were observed in all strata, and S-boutons with large vesicles (mean vesicle area >1482 nm(2)) were distributed in the st. Luc and Ori, but not in the st. Mol. F-boutons were predominantly distributed in the upper half of the st. Mol and in the area around the st. Pyr, although they were observed in all strata. In the st. Mol, all the F-boutons were in contact with dendritic shafts, while near the st. Pyr, F-boutons were found exclusively on somata, the proximal parts of the dendritic shafts, and the initial segments of axons. The average F-bouton was smaller in the st. Mol (0.23 microm(2)) than near the st. Pyr (0.39 microm(2)). In this synapto-architectural study of the hippocampal CA3 region using large montage electron micrographs, we observed (1) an intimate relationship between synapse distribution and the dendritic structure of pyramidal neurons, (2) the distribution of different types of boutons containing vesicles of various size, and (3) two different plausible foci of postsynaptic inhibition where F-boutons were distributed densely, and (4) estimated the input ratios of pyramidal neurons.


Asunto(s)
Hipocampo/citología , Terminales Presinápticos/ultraestructura , Sinapsis/ultraestructura , Animales , Diseño Asistido por Computadora , Hipocampo/fisiología , Hipocampo/ultraestructura , Masculino , Microscopía Electrónica/métodos , Modelos Neurológicos , Terminales Presinápticos/clasificación , Ratas , Ratas Wistar , Sinapsis/clasificación , Sinapsis/fisiología , Vesículas Sinápticas/clasificación , Vesículas Sinápticas/ultraestructura
12.
J Neurosci Res ; 75(6): 771-81, 2004 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-14994338

RESUMEN

Although vesicular retrograde transport of neurotrophins in vivo is well established, relatively little is known about the mechanisms that underlie vesicle endocytosis and formation before transport. We demonstrate that in vivo not all retrograde transport vesicles are alike, nor are they all formed using identical mechanisms. As characterized by density, there are at least two populations of vesicles present in the synaptic terminal that are retrogradely transported along the axon: those containing neurotrophins (NTs) and those resulting from synaptic vesicle recycling. Vesicles containing nerve growth factor (NGF), NT-3, or NT-4 had similar densities with peak values at about 1.05 g/ml. Synaptic-derived vesicles, labeled with anti-dopamine beta-hydroxylase (DBH), had densities with peak values at about 1.16 g/ml. We assayed the effects of pharmacologic agents in vivo on retrograde transport from the anterior eye chamber to the superior cervical ganglion. Inhibitors of phosphatidylinositol-3-OH (PI-3) kinase and actin function blocked transport of both anti-DBH and NGF, demonstrating an essential role for these molecules in retrograde transport of both vesicle types. Dynamin, a key element in synaptic vesicle recycling, was axonally transported in retrograde and anterograde directions, and compounds able to interfere with dynamin function had a differential effect on retrograde transport of NTs and anti-DBH. Okadaic acid significantly decreased retrograde axonal transport of anti-DBH and increased NGF retrograde transport. We conclude that there are both different and common proteins involved in endocytosis and targeting of retrograde transport of these two populations of vesicles.


Asunto(s)
Transporte Axonal/fisiología , Factores de Crecimiento Nervioso/metabolismo , Neuronas/fisiología , Sistema Nervioso Periférico/citología , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Anticuerpos/farmacología , Transporte Axonal/efectos de los fármacos , Western Blotting/métodos , Catecolaminas/metabolismo , Dopamina beta-Hidroxilasa/inmunología , Dopamina beta-Hidroxilasa/metabolismo , Dinaminas/metabolismo , Endocitosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Exocitosis/efectos de los fármacos , Inmunohistoquímica/métodos , Inmunosupresores/farmacología , Isótopos de Yodo/metabolismo , Ligadura/métodos , Factor de Crecimiento Nervioso/metabolismo , Níquel/farmacología , Sistema Nervioso Periférico/fisiología , Ratas , Ratas Wistar , Nervio Ciático/metabolismo , Ganglio Cervical Superior/citología , Ganglio Cervical Superior/efectos de los fármacos , Vesículas Sinápticas/clasificación , Tacrolimus/farmacología , Tirfostinos/farmacología
13.
J Neurosci ; 23(30): 9697-709, 2003 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-14585997

RESUMEN

Presynaptic synthesis of acetylcholine (ACh) requires a steady supply of choline, acquired by a plasma membrane, hemicholinium-3-sensitive (HC-3) choline transporter (CHT). A significant fraction of synaptic choline is recovered from ACh hydrolyzed by acetylcholinesterase (AChE) after vesicular release. Although antecedent neuronal activity is known to dictate presynaptic CHT activity, the mechanisms supporting this regulation are unknown. We observe an exclusive localization of CHT to cholinergic neurons and demonstrate that the majority of CHTs reside on small vesicles within cholinergic presynaptic terminals in the rat and mouse brain. Furthermore, immunoisolation of presynaptic vesicles with multiple antibodies reveals that CHT-positive vesicles carry the vesicular acetylcholine transporter (VAChT) and synaptic vesicle markers such as synaptophysin and Rab3A and also contain acetylcholine. Depolarization of synaptosomes evokes a Ca2+-dependent botulinum neurotoxin C-sensitive increase in the Vmax for HC-3-sensitive choline uptake that is accompanied by an increase in the density of CHTs in the synaptic plasma membrane. Our study leads to the novel hypothesis that CHTs reside on a subpopulation of synaptic vesicles in cholinergic terminals that can transit to the plasma membrane in response to neuronal activity to couple levels of choline re-uptake to the rate of ACh release.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular , Animales , Especificidad de Anticuerpos , Biomarcadores/análisis , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Fibras Colinérgicas/química , Fibras Colinérgicas/metabolismo , Técnicas de Inmunoadsorción , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Neuronas/química , Neuronas/metabolismo , Células PC12 , Terminales Presinápticos/química , Transporte de Proteínas , Ratas , Fracciones Subcelulares/química , Vesículas Sinápticas/química , Vesículas Sinápticas/clasificación , Proteínas de Transporte Vesicular de Acetilcolina
14.
Biophys J ; 84(3): 1563-79, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12609861

RESUMEN

We discuss a model of presynaptic vesicle dynamics, which allows for heterogeneity in release probability among vesicles. Specifically, we explore the possibility that synaptic activity is carried by two types of vesicles; first, a readily releasable pool and, second, a reluctantly releasable pool. The pools differ regarding their probability of release and time scales on which released vesicles are replaced by new ones. Vesicles of both pools increase their release probability during repetitive stimulation according to the buildup of Ca(2+) concentration in the terminal. These properties are modeled to fit data from the calyx of Held, a giant synapse in the auditory pathway. We demonstrate that this arrangement of two pools of releasable vesicles can account for a variety of experimentally observed patterns of synaptic depression and facilitation at this synapse. We conclude that synaptic transmission cannot be accurately described unless heterogeneity of synaptic release probability is taken into account.


Asunto(s)
Potenciales de Acción/fisiología , Vías Auditivas/fisiología , Calcio/metabolismo , Modelos Neurológicos , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología , Adaptación Fisiológica/fisiología , Simulación por Computador , Potenciales Postsinápticos Excitadores/fisiología , Homeostasis/fisiología , Transporte Iónico/fisiología , Terminales Presinápticos/fisiología , Sinapsis/fisiología , Vesículas Sinápticas/clasificación , Vesículas Sinápticas/metabolismo
15.
J Comp Neurol ; 427(1): 31-53, 2000 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-11042590

RESUMEN

In an attempt to contribute to the current knowledge of the brainstem reticular formation synaptic organization, the ultrastructure and distribution of synaptic terminal profiles on neurons in the ventral part of the oral pontine reticular nucleus (vRPO), the rapid eye movement (REM) sleep-induction site, were studied quantitatively. Terminals with asymmetric contacts and rounded vesicles were classified according to vesicle density as type I or II (high or low density, respectively). The area, apposed perimeter length, and mitochondrial area of type I terminals, on average, were significantly smaller than those of type II terminals. Type III and IV terminals had symmetric contacts and oval and/or flattened vesicles; type III terminals formed synapses between them and on initial axons. Type V and VI terminals showed characteristics intermediate to those of asymmetric and symmetric synapses. Interestingly, some terminal features were related to both terminal area and postsynaptic dendritic diameter. The percentages of different synapses sampled on somata were as follows: asymmetric synapses (usually formed by type II terminals; mean +/- S.D.), 26.4% +/- 3%; symmetric synapses, 46.7% +/- 5.2%; and intermediate synapses, 26.9% +/- 6.1%. The percentages of different synapses sampled on dendrites were asymmetric synapses, 62.1% +/- 9%; symmetric synapses, 25.6% +/- 8.1%; and intermediate synapses, 12.3% +/- 1.7%. Comparison between large- and small-diameter dendrites revealed that the percentages of symmetric synapses and type II terminals decreased, whereas the percentages of type I terminals increased as postsynaptic dendritic diameters became smaller. Synaptic density was approximately four times lower on somata than on dendrites. The vRPO synaptic organization reflects some patterns that are similar to those found in other regions of the central nervous system as well as specific synaptic patterns that are probably related to its functions: the generation and maintenance of REM sleep and the control of eye movement or limb muscle tone.


Asunto(s)
Gatos/anatomía & histología , Puente/ultraestructura , Terminales Presinápticos/ultraestructura , Formación Reticular/ultraestructura , Sueño REM/fisiología , Sinapsis/ultraestructura , Animales , Gatos/fisiología , Tamaño de la Célula/fisiología , Dendritas/clasificación , Dendritas/fisiología , Dendritas/ultraestructura , Microscopía Electrónica , Vías Nerviosas/fisiología , Vías Nerviosas/ultraestructura , Puente/fisiología , Terminales Presinápticos/clasificación , Terminales Presinápticos/fisiología , Formación Reticular/fisiología , Sinapsis/clasificación , Sinapsis/metabolismo , Membranas Sinápticas/clasificación , Membranas Sinápticas/fisiología , Membranas Sinápticas/ultraestructura , Vesículas Sinápticas/clasificación , Vesículas Sinápticas/fisiología , Vesículas Sinápticas/ultraestructura
16.
J Struct Biol ; 119(3): 347-59, 1997 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9245772

RESUMEN

In an effort to elucidate the interactions between synaptic vesicles and the membrane of the active zone, we have investigated the structure of interneuronal asymmetric synapses in the neocortex of adult rats using thin-sectioning, freeze-fracture, and negative staining electron microscopy. We identified three subtypes of spherical synaptic vesicles. Type I were agranular vesicles of 47.5 +/- 3.8 nm (mean SD, n = 24) in diameter usually seen aggregated in clusters in the presynaptic bouton. Type II synaptic vesicles were composed of a approximately 45-nm-diameter lipid bilayer sphere encased in a cage 77 +/- 4.6 nm (mean SD, n = 42) in diameter. The cage was composed of open-faced pentamers 20-22 nm/side arranged as a regular polyhedron. Type II caged vesicles were found in clusters at the boutons, adhered to the active zone, and were also present in axons. Type III synaptic vesicles appeared as electron-dense spheres 60-75 nm in diameter abutted to the membrane of the active zone. Clathrin-coated vesicles and pits of 116.6 +/- 9 nm (mean SD, n = 14) in diameter were also present in both the pre- and postsynaptic sides. Freeze-fracture showed that some intrinsic membrane proteins in the active zone were arranged as pentamers exhibiting the same dimension of those forming cages (approximately 22 nm/side). From these data, we concluded that: (a) the presynaptic bouton contains a heterogeneous population of "caged" and "plain" synaptic vesicles and (b) type II synaptic vesicles bind to receptors in the active zone. Therefore, current models of transmitter release should take into account the substantial heterogeneity of the vesicle population and the binding of vesicular cages to the membrane of the active zone.


Asunto(s)
Vesículas Sinápticas/ultraestructura , Animales , Corteza Cerebral/citología , Invaginaciones Cubiertas de la Membrana Celular/ultraestructura , Femenino , Técnica de Fractura por Congelación , Masculino , Microscopía Electrónica , Coloración Negativa , Neurotransmisores/metabolismo , Ratas , Ratas Sprague-Dawley , Vesículas Sinápticas/química , Vesículas Sinápticas/clasificación , Vesículas Sinápticas/metabolismo
17.
Pharmacol Res ; 32(6): 345-53, 1995 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8736485

RESUMEN

The vesicular hypothesis of quantal acetylcholine release describes the process by which discrete packages (or quanta) of the transmitter are released from nerve terminals through the exocytosis of the content of synaptic vesicles. However, cholinergic synaptic vesicles can no longer be vaguely regarded as simple membrane bound 'sacks' of the transmitter. Modern molecular, biochemical, morphological and electrophysiological research has revealed them to be complex cellular structures with a heterogeneous mixture of functions. Thus, not all synaptic vesicle populations are formed under the same circumstances and there are variations in the releasability of synaptic vesicle populations. This review briefly outlines some of the experimental research that has lead to our current thinking on the heterogeneity of vesicular acetylcholine storage in cholinergic nerve terminals. In addition, a model for vesicular acetylcholine storage and release is presented that attempts to accommodate many of the modern ideas concerning cholinergic synaptic vesicle function and interaction.


Asunto(s)
Acetilcolina/metabolismo , Unión Neuromuscular/ultraestructura , Vesículas Sinápticas/fisiología , Acetilcolina/fisiología , Animales , Neuronas Motoras/metabolismo , Neuronas Motoras/ultraestructura , Terminaciones Nerviosas/metabolismo , Terminaciones Nerviosas/ultraestructura , Unión Neuromuscular/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/clasificación , Vesículas Sinápticas/ultraestructura
19.
Brain Res ; 475(1): 103-17, 1988 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-3214719

RESUMEN

Synaptic vesicle populations have been morphometrically analyzed for size and density. Populations composed of a single size class of vesicles are represented by normal (Gaussian) or positive (log-normal) skew histograms. Populations with multiple size classes generate negative (left) skew distributions. Fixatives containing aldehydes differentially affect these distribution patterns but vesicles are able to withstand tonic effects over a wide range. Reader bias' contribute the most error in the data-collecting process. But despite this, the sizing of vesicle populations can be accomplished with great accuracy. Vesicle density computations, on the other hand, vary over a wide range and are of less value for comparative purposes.


Asunto(s)
Órgano Eléctrico/ultraestructura , Vesículas Sinápticas/clasificación , Animales , Fijadores , Microscopía Electrónica , Rajidae , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/ultraestructura , Torpedo
20.
Neuroscience ; 22(3): 1003-13, 1987 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-3317113

RESUMEN

This study was undertaken to examine some aspects of the anatomical substrate for reproductive senescence. Immunocytochemically identified luteinizing hormone-releasing hormone neurons and their processes in the male rat brain preoptic area were compared in young adult (2-4 months), middle-aged (12-14 months) and old (20-23 months) animals. At the light microscopic level there were no age-dependent differences in total numbers or sizes of LHRH neurons nor in their distribution in the brain. Examination of these neurons at the electron microscopic level did reveal significant differences in certain organelles and in the degree and kind of synaptic input. Random sections of middle-aged luteinizing hormone-releasing hormone neurons more frequently passed through the nucleolus and the incidence of nematosomes was higher than in luteinizing hormone-releasing hormone neurons from the young and old animals. Quantitative measures of synaptic input to luteinizing hormone-releasing hormone soma and dendrites as well as to unidentified neurons in the same thin section were made. These are reported as percent of membrane that showed synaptic structure. Dendrites of both luteinizing hormone-releasing hormone and nonidentified neurons were more densely innervated than perikarya. The density of synaptic input to luteinizing hormone-releasing hormone neurons was significantly greater than that to nonidentified neurons in young and middle-aged animals, but was equal to that of nonidentified neurons by old age. Age-related changes were noted in synaptic organization with the most significant change being an increased input to luteinizing hormone-releasing hormone perikarya. Indeed, synaptic input to luteinizing hormone-releasing hormone perikaryal membrane was increased three-fold by middle age and ten-fold by old age. Density of synaptic input to luteinizing hormone-releasing hormone dendritic membrane did not change with age. There were no aging changes in percentage of membrane with synaptic structure in nonidentified elements. Synapses were also classified on the basis of their synaptic vesicle content. There were proportionately more synaptic boutons containing round clear than pleomorphic vesicles in the young sample. The proportion of synapses with pleomorphic vesicles increased with age onto both luteinizing hormone-releasing hormone perikarya and their dendrites. The proportion of boutons containing some electron dense-core vesicles along with clear vesicles decreased with age onto both luteinizing hormone-releasing hormone and nonidentified neurons and their processes.


Asunto(s)
Envejecimiento/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Área Preóptica/fisiología , Caracteres Sexuales , Sinapsis/fisiología , Envejecimiento/metabolismo , Animales , Inmunohistoquímica , Masculino , Microscopía Electrónica , Área Preóptica/metabolismo , Área Preóptica/ultraestructura , Ratas , Ratas Endogámicas , Sinapsis/clasificación , Sinapsis/ultraestructura , Vesículas Sinápticas/clasificación , Vesículas Sinápticas/fisiología , Vesículas Sinápticas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...