Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36230438

RESUMO

This work aimed to evaluate the lovastatin (Lv) production by solid-state fermentation (SSF) from selected crop residues, considering the post-fermented residues as feed supplements for ruminants. The SSF was performed with two substrates (wheat bran and oat straw) and two A. terreus strains (CDBB H-194 and CDBB H-1976). The Lv yield, proximate analysis, and organic compounds by GC-MS in the post-fermented residues were assessed. The combination of the CDBB H-194 strain with oat straw at 16 d of incubation time showed the highest Lv yield (23.8 mg/g DM fed) and the corresponding degradation efficiency of hemicellulose + cellulose was low to moderate (24.1%). The other three treatments showed final Lv concentrations in decreasing order of 9.1, 6.8, and 5.67 mg/g DM fed for the oat straw + CDBB H-1976, wheat bran + CDBB H-194, and wheat bran + CDBB H-1976, respectively. An analysis of variance of the 22 factorial experiment of Lv showed a strong significant interaction between the strain and substrate factors. The kinetic of Lv production adequately fitted a zero-order model in the four treatments. GC-MS analysis identified only a couple of compounds from the residues fermented by A. terreus CDBB H-194 (1,3-dipalmitin trimethylsilyl ether in the fermented oat straw and stearic acid hydrazide in the fermented wheat bran) that could negatively affect ruminal bacteria and fungi. Solid-state fermentation of oat straw with CDBB H-194 deserves further investigation due to its high yield of Lv; low dietary proportions of this post-fermented oat straw could be used as an Lv-carrier supplement for rumen methane mitigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...