Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36676235

RESUMO

Anionic surfactants, such as sodium linear alkylbenzene sulfonates (NaLAS), are utilized in various fields, including industry, household, and agriculture. The efficiency of their use in aqueous environments is significantly affected by the presence of cations, Ca2+ and Mg2+ in particular, as they can decrease the concentration of the surfactant due to precipitation. To understand cation-sulfonate interactions better, we study both NaLAS colloidal solutions in the presence of CaCl2 and precipitates forming at higher salt concentrations. Upon addition of CaCl2, we find the surface tension and critical micelle concentration of NaLAS to decrease significantly, in line with earlier findings for alkylbenzylsulfonates in the presence of divalent cations. Strikingly, an increase in the surface tension is discernible above 0.6 g L-1 NaLAS, accompanied by the decrease of apparent micelle sizes, which in turn gives rise to transparent systems. Thus, there appears to be a second critical concentration indicating another micellar equilibrium. Furthermore, the maximum salt tolerance of the surfactant is 0.1 g L-1 Ca2+, above which rapid precipitation occurs yielding sparingly soluble CaLAS2∙2H2O.

2.
Materials (Basel) ; 14(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500969

RESUMO

The synthesis of the copper-poor and aluminum-rich layered double hydroxides (LDHs) of the CuAl4 type was optimized in detail in this work, by applying an intense mechanochemical treatment to activate the gibbsite starting reagent. The phase-pure forms of these LDHs were prepared for the first time; using copper nitrate and perchlorate salts during the syntheses turned out to be the key to avoiding the formation of copper hydroxide sideproducts. Based on the use of the optimized syntheses parameters, the preparation of layered triple and multiple hydroxides was also attempted using Ni(II), Co(II), Zn(II) and even Mg(II) ions. These studies let us identify the relative positions of the incorporating cations in the well-known selectivity series as Ni2+ >> Cu2+ >> Zn2+ > Co2+ >> Mg2+. The solids formed were characterized by using powder X-ray diffractometry, UV-Vis diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. The catalytic potential of the samples was investigated in carbon monoxide oxidation reactions at atmospheric pressure, supported by an in situ diffuse reflectance infrared spectroscopy probe. All solids proved to be active and the combination of the nickel and cobalt incorporation (which resulted in a NiCoAl8 layered triple hydroxide) brought outstanding benefits regarding low-temperature oxidation and increased carbon monoxide conversion values.

3.
Nanomaterials (Basel) ; 10(4)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231111

RESUMO

In the experimental work leading to this contribution, the parameters of the ultrasound treatment (temperature, output power, emission periodicity) were varied to learn about the effects of the sonication on the crystallization of Ni nanoparticles during the hydrazine reduction technique. The solids were studied in detail by X-ray diffractometry, dynamic light scattering, thermogravimetry, specific surface area, pore size analysis, temperature-programmed CO2/NH3 desorption and scanning electron microscopy. It was found that the thermal behaviour, specific surface area, total pore volume and the acid-base character of the solids were mainly determined by the amount of the nickel hydroxide residues. The highest total acidity was recorded over the solid under low-power (30 W) continuous ultrasonic treatment. The catalytic behaviour of the nanoparticles was tested in a Suzuki-Miyaura cross-coupling reaction over five samples prepared in the conventional as well as the ultrasonic ways. The ultrasonically prepared catalysts usually performed better, and the highest catalytic activity was measured over the nanoparticles prepared under low-power (30 W) continuous sonication.

4.
Ultrason Sonochem ; 55: 165-173, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30853533

RESUMO

The output power (30-150 W) and the periodicity (20-100%) of ultrasound emission were varied in a wide range to regulate and improve the crystallization process in the commonly used co-precipitation technique of chloride-intercalated CaFe-layered double hydroxides. The influence of ultrasound irradiation on the as-prepared materials was studied by X-ray diffractometry, dynamic light scattering, UV-Vis-NIR diffuse reflectance spectroscopy, specific surface area measurement, pore size analysis, ion-selective electrode potentiometric investigations and thermogravimetry. Additionally, structural alterations due to heat treatment at various temperatures were followed in detail by Fourier-transform infrared and X-ray absorption spectroscopies as well as scanning electron microscopy. The ultrasonic treatment was capable of controlling the sizes of primarily formed (from 19 nm to 30 nm) as well as the aggregated (secondary) particles (between 450 nm and 700 nm), and thus modifying their textural parameters and enhancing the incorporation of chloride anions into the interlamellar space. For the first time, the optical energy gap of CaFe-LDH was reported here depending on the nature of applied stirring (4.18-4.34 eV). The heat-treatment investigations revealed that the layered structure was stabile until 200 °C, even at the atomic level.

5.
J Nanosci Nanotechnol ; 19(1): 389-394, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30327046

RESUMO

Samples of copper powder was milled with varied grinding frequencies in the presence of various organic agents (oleylamine, ethylene glycol or dimethyl sulfoxide) or without additives. The effects of experimental conditions were investigated by X-ray diffractometry, scanning electron microscopy and dynamic light scattering measurements. The aggregation of particles were supressed by added organics. The catalytic activities of the variously treated samples were measured in the Ullmanntype reaction of iodobenzene and 1H-pyrazole.

6.
J Nanosci Nanotechnol ; 19(1): 453-458, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30327055

RESUMO

The hydrazine reduction method was applied for the synthesis of nickel nanoparticles without using inert atmosphere and added surface active agents. The effect of the preparation temperature and the chemical quality of the metal sources as well as the solvents were studied. The generation of nanoparticles were studied primarily by X-ray diffractometry, but scanning and transmission electron microscopies as well as dynamic light scattering measurements were also used for the better understanding of the nanoparticles behaviour. The elevation of temperature was the key point in transforming Ni(OH)2 into metallic nickel. By selecting the metal source, the obtained crystallite sizes could be tailored between 7 nm and 15 nm; however, the SEM and DLS measurements revealed significant agglomeration resulting in aggregates with spherical or Ni(OH)2 resembling morphologies depending on the solvent used. The catalytic activities of the nanoparticles prepared were tested and compared in a Suzuki-Miyaura cross-coupling reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...