Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 403, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195566

RESUMO

The lateral hypothalamus (LH) is involved in feeding behavior and defense responses by interacting with different brain structures, including the Ventral Tegmental Area (VTA). Emerging evidence indicates that LH-glutamatergic neurons infrequently synapse on VTA-dopamine neurons but preferentially establish multiple synapses on VTA-glutamatergic neurons. Here, we demonstrated that LH-glutamatergic inputs to VTA promoted active avoidance, long-term aversion, and escape attempts. By testing feeding in the presence of a predator, we observed that ongoing feeding was decreased, and that this predator-induced decrease in feeding was abolished by photoinhibition of the LH-glutamatergic inputs to VTA. By VTA specific neuronal ablation, we established that predator-induced decreases in feeding were mediated by VTA-glutamatergic neurons but not by dopamine or GABA neurons. Thus, we provided evidence for an unanticipated neuronal circuitry between LH-glutamatergic inputs to VTA-glutamatergic neurons that plays a role in prioritizing escape, and in the switch from feeding to escape in mice.


Assuntos
Região Hipotalâmica Lateral , Área Tegmentar Ventral , Animais , Camundongos , Neurônios GABAérgicos , Neurônios Dopaminérgicos , Afeto
2.
Neuropsychopharmacology ; 48(9): 1300-1308, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37270620

RESUMO

Opioid withdrawal signs, such as hyperalgesia, are manifestations of opioid use disorder that may contribute to opioid seeking and taking. We have previously identified an association between dorsal raphe (DR) neurons and the expression of hyperalgesia during spontaneous heroin withdrawal. Here, we found that chemogenetic inhibition of DR neurons decreased hyperalgesia during spontaneous heroin withdrawal in male and female C57/B6 mice. By neuroanatomy, we identified three major subtypes of DR neurons expressing µ-opioid receptors (MOR) that were activated in hyperalgesia during spontaneous withdrawal, those expressing vesicular GABA transporter (VGaT), glutamate transporter 3 (VGluT3), or co-expressing VGluT3 and tryptophan hydroxylase (TPH). In contrast, we identified a small population of DR-MOR neurons expressing solely TPH, which were not activated in hyperalgesia during spontaneous withdrawal. Collectively, these findings indicate a role of the DR in hyperalgesia during spontaneous heroin withdrawal mediated, in part, by the activation of local MOR-GABAergic, MOR-glutamatergic and MOR-co-releasing glutamatergic-serotonergic neurons. We found that  specific chemogenetic inhibition of DR-VGaT neurons blocked hyperalgesia during spontaneous heroin withdrawal in male and female mice. Collectively, these findings indicate that DR-GABAergic neurons play a role in the expression of hyperalgesia during spontaneous heroin withdrawal.


Assuntos
Núcleo Dorsal da Rafe , Hiperalgesia , Camundongos , Masculino , Feminino , Animais , Núcleo Dorsal da Rafe/metabolismo , Heroína , Analgésicos Opioides , Neurônios GABAérgicos/metabolismo , Receptores Opioides mu/metabolismo
3.
eNeuro ; 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35728954

RESUMO

Opioid withdrawal involves the manifestation of motivational and somatic symptoms. However, the brain structures that are involved in the expression of different opioid withdrawal signs remain unclear. We induced opioid dependence by repeatedly injecting escalating heroin doses in male and female C57BL/6J mice. We assessed hyperalgesia during spontaneous heroin withdrawal and somatic signs of withdrawal that was precipitated by the preferential µ-opioid receptor antagonist naloxone. Heroin-treated mice exhibited significantly higher hyperalgesia and somatic signs than saline-treated mice. Following behavioral assessment, we measured regional changes in brain activity by automated the counting of c-Fos expression (a marker of cellular activity). Using Principal Component Analysis, we determined the association between behavior (hyperalgesia and somatic signs of withdrawal) and c-Fos expression in different brain regions. Hyperalgesia was associated with c-Fos expression in the lateral hypothalamus, central nucleus of the amygdala, ventral tegmental area, parabrachial nucleus, dorsal raphe, and locus coeruleus. Somatic withdrawal was associated with c-Fos expression in the paraventricular nucleus of the thalamus, lateral habenula, dorsal raphe, and locus coeruleus. Thus, hyperalgesia and somatic withdrawal signs were each associated with c-Fos expression in unique sets of brain areas. The expression of c-Fos in the dorsal raphe and locus coeruleus was associated with both hyperalgesia and somatic withdrawal. Understanding common neurobiological mechanisms of acute and protracted opioid withdrawal may help identify new targets for treating this salient aspect of opioid use disorder.SIGNIFICANCE STATEMENTThe public impact of the opioid crisis has prompted an effort to understand the neurobiological mechanisms of opioid use disorder (OUD). The need to avoid withdrawal symptoms is hypothesized to drive compulsive drug-taking and -seeking in OUD. Thus, understanding the mechanisms of acute and protracted opioid withdrawal may help identify new targets for treating this salient aspect of OUD. We reported brain structures that are associated with the expression of hyperalgesia and somatic signs of opioid withdrawal in male and female heroin-dependent mice. Hyperalgesia during spontaneous opioid withdrawal and somatic withdrawal resulted in c-Fos expression in autonomic and limbic brain regions. The expression of c-Fos in the dorsal raphe and locus coeruleus were associated with both hyperalgesia and somatic withdrawal.

4.
Mol Psychiatry ; 26(6): 1860-1879, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32161361

RESUMO

Stress promotes negative affective states, which include anhedonia and passive coping. While these features are in part mediated by neuroadaptations in brain reward circuitry, a comprehensive framework of how stress-induced negative affect may be encoded within key nodes of this circuit is lacking. Here, we show in a mouse model for stress-induced anhedonia and passive coping that these phenomena are associated with increased synaptic strength of ventral hippocampus (VH) excitatory synapses onto D1 medium spiny neurons (D1-MSNs) in the nucleus accumbens medial shell (NAcmSh), and with lateral hypothalamus (LH)-projecting D1-MSN hyperexcitability mediated by decreased inwardly rectifying potassium channel (IRK) function. Stress-induced negative affective states are prevented by depotentiation of VH to NAcmSh synapses, restoring Kir2.1 function in D1R-MSNs, or disrupting co-participation of these synaptic and intrinsic adaptations in D1-MSNs. In conclusion, our data provide strong evidence for a disynaptic pathway controlling maladaptive emotional behavior.


Assuntos
Anedonia , Receptores de Dopamina D1 , Adaptação Psicológica , Animais , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo
5.
Mol Neurobiol ; 56(2): 797-811, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29797183

RESUMO

While the role of the ascending dopaminergic system in brain function and dysfunction has been a subject of extensive research, the role of the descending dopaminergic system in spinal cord function and dysfunction is just beginning to be understood. Adenosine plays a key role in the inhibitory control of the ascending dopaminergic system, largely dependent on functional complexes of specific subtypes of adenosine and dopamine receptors. Combining a selective destabilizing peptide strategy with a proximity ligation assay and patch-clamp electrophysiology in slices from male mouse lumbar spinal cord, the present study demonstrates the existence of adenosine A1-dopamine D1 receptor heteromers in the spinal motoneuron by which adenosine tonically inhibits D1 receptor-mediated signaling. A1-D1 receptor heteromers play a significant control of the motoneuron excitability, represent main targets for the excitatory effects of caffeine in the spinal cord and can constitute new targets for the pharmacological therapy after spinal cord injury, motor aging-associated disorders and restless legs syndrome.


Assuntos
Cafeína/farmacologia , Neurônios Motores/efeitos dos fármacos , Receptores de Dopamina D1/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Adenosina/farmacologia , Células Cultivadas , Dopamina/farmacologia , Humanos , Neurônios Eferentes/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
6.
J Caffeine Res ; 6(4): 154-162, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28078169

RESUMO

Background: The purpose of this study was to determine energy drink (ED) consumption patterns among Hispanic college students. We measured the prevalence and frequency of ED consumption according to gender, degree programs, and specific university-related and social situations. In addition, we assessed the frequency of consumption of EDs mixed with alcoholic beverages. Methods: A total of 508 college students from the University of Puerto Rico, the largest Hispanic institution of higher education statewide, completed an online questionnaire. Results: Twenty-one percent of participants reported consuming EDs with the majority consuming EDs either occasionally (every 2-3 months) or at least once or twice a month. Men were found to be more likely to consume EDs than women. Undergraduate students were found less likely to consume EDs than graduate students. Most students consumed EDs while studying and during social activities. More than one-third of participants that consume EDs admitted mixing them with an alcoholic beverage. Graduate students were found to consume EDs mixed with alcohol more often. Conclusions: The majority of students consumed EDs occasionally and while studying. Most side effects reported after consuming EDs were similar to previous findings. The higher consumption of EDs and of EDs mixed with alcohol by students in graduate programs could be explained by a higher and more complex study load requiring longer periods of wakefulness and concentration. Future studies looking at the consumption patterns of EDs in more competitive graduate programs such as medical and/or dentistry school should be considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...