Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 203: 111764, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33892282

RESUMO

Nanoemulsions are kinetically stabilized emulsions with droplet sizes in the nanometer scale. These nanodroplets are able to confine spaces in which reactions of polymerization or precipitation can take place, leading to the formation of particles and capsules that can act as nanocarriers for biomedical applications. This review discusses the different possibilities of using nanoemulsions for preparing biomedical nanocarriers. According to the chemical nature, nanocarriers prepared in nanoemulsions are classified in polymeric, inorganic, or hybrid. The main synthetic strategies for each type are revised, including miniemulsion polymerization, nanoemulsion-solvent evaporation, spontaneous emulsification, sol-gel processes, and combination of different techniques to form multicomponent materials.


Assuntos
Polímeros , Emulsões , Solventes
2.
Nanotechnology ; 31(40): 405604, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32259810

RESUMO

The heterogeneous catalysis of the hydration of nitriles to amides is a process of great industrial relevance in which cerium(IV) oxide (also referred to as ceria) has shown an outstanding catalytic performance. The use of non-supported ceria nanoparticles is related to difficulties in the purification of the product and the recovery and recyclability of the catalyst. Therefore, in this work, ceria nanoparticles are supported on a polymer matrix either by synthesizing polymer particles by so-called Pickering miniemulsions while using ceria nanoparticles as emulsion stabilizers or, as a comparison, by in-situ crystallization on preformed polymer particles. The former strategy presents significant advantages over the latter in terms of time and consumption of resources, and it facilitates an easier scale-up of the process. In both strategies, the incorporation of a magnetoresponsive core within the polymer matrix allows the recovery and the recycling of the catalyst by simple application of a magnetic field and offers an enhancement of the catalytic efficiency.

3.
Langmuir ; 32(49): 13116-13123, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27951699

RESUMO

A heterophase method to prepare hollow and/or porous crystalline nanoparticles of metal oxides at room temperature is presented, taking cerium(IV) oxide and γ-iron(III) oxide (i.e., maghemite) as representative cases. The crystallization begins at the oil-water interface in aqueous nanodroplets of the precursor in inverse (water-in-oil) miniemulsion systems, and it may continue toward the inner part of the droplets. A poly(styrene-b-acrylic acid) block copolymer is used as a structuring agent because the ability of the carboxylic groups to bind metal ions improves the inorganic shell formation. A precipitating base is added from the continuous phase, generating hydroxide species at the interface that begin the crystallization. We analyze the effects of the synthetic parameters in terms of colloidal stability and morphology of the resulting materials. In the case of maghemite samples, the prepared dispersions of hollow particles present a distinct magnetofluidic behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...