Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 994496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439182

RESUMO

Aminopeptidase N, or CD13, is a cell membrane ectopeptidase highly expressed in myeloid cells. Through its enzymatic activity, CD13 regulates the activity of several bioactive peptides, such as endorphins and enkephalins, chemotactic peptides like MCP-1 and IL-8, angiotensin III, bradikinin, etc. In recent years, it has been appreciated that independently of its peptidase activity, CD13 can activate signal transduction pathways and mediate effector functions such as phagocytosis and cytokine secretion in monocytes and macrophages. Although neutrophils are known to express CD13 on its membrane, it is currently unknown if CD13 can mediate effector functions in these cells. Here, we show that in human neutrophils CD13 can mediate phagocytosis, which is dependent on a signaling pathway that involves Syk, and PI3-K. Phagocytosis mediated by CD13 is associated with production of reactive oxygen species (ROS). The level of phagocytosis and ROS production mediated by CD13 are similar to those through FcγRIII (CD16b), a widely studied receptor of human neutrophils. Also, CD13 ligation induces the release of neutrophil extracellular traps (NETs) as well as cytokine secretion from neutrophils. These results support the hypothesis that CD13 is a membrane receptor able to activate effector functions in human neutrophils.


Assuntos
Armadilhas Extracelulares , Humanos , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Citocinas/metabolismo , Fagocitose
2.
Front Immunol ; 12: 631821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746968

RESUMO

Neutrophils or polymorphonuclear leukocytes (PMN) are key participants in the innate immune response for their ability to execute different effector functions. These cells express a vast array of membrane receptors that allow them to recognize and eliminate infectious agents effectively and respond appropriately to microenvironmental stimuli that regulate neutrophil functions, such as activation, migration, generation of reactive oxygen species, formation of neutrophil extracellular traps, and mediator secretion, among others. Currently, it has been realized that activated neutrophils can accomplish their effector functions and simultaneously activate mechanisms of cell death in response to different intracellular or extracellular factors. Although several studies have revealed similarities between the mechanisms of cell death of neutrophils and other cell types, neutrophils have distinctive properties, such as a high production of reactive oxygen species (ROS) and nitrogen species (RNS), that are important for their effector function in infections and pathologies such as cancer, autoimmune diseases, and immunodeficiencies, influencing their cell death mechanisms. The present work offers a synthesis of the conditions and molecules implicated in the regulation and activation of the processes of neutrophil death: apoptosis, autophagy, pyroptosis, necroptosis, NETosis, and necrosis. This information allows to understand the duality encountered by PMNs upon activation. The effector functions are carried out to eliminate invading pathogens, but in several instances, these functions involve activation of signaling cascades that culminate in the death of the neutrophil. This process guarantees the correct elimination of pathogenic agents, damaged or senescent cells, and the timely resolution of the inflammation that is essential for the maintenance of homeostasis in the organism. In addition, they alert the organism when the immunological system is being deregulated, promoting the activation of other cells of the immune system, such as B and T lymphocytes, which produce cytokines that potentiate the microbicide functions.


Assuntos
Morte Celular/imunologia , Neutrófilos/patologia , Apoptose/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/imunologia , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Radicais Livres/metabolismo , Humanos , Necroptose/imunologia , Necrose/imunologia , Necrose/metabolismo , Ativação de Neutrófilo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagocitose/imunologia , Piroptose/imunologia , Receptores de Morte Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...