Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35740651

RESUMO

Hypoxia-inducible factors (HIF) 2α and 1α are the major oxygen-sensing molecules in eukaryotic cells. HIF2α has been pathogenically linked to paraganglioma and pheochromocytoma (PPGL) arising in sympathetic paraganglia or the adrenal medulla (AM), respectively. However, its involvement in the pathogenesis of paraganglioma arising in the carotid body (CB) or other parasympathetic ganglia in the head and neck (HNPGL) remains to be defined. Here, we retrospectively analyzed HIF2α by immunohistochemistry in 62 PPGL/HNPGL and human CB and AM, and comprehensively evaluated the HIF-related transcriptome of 202 published PPGL/HNPGL. We report that HIF2α is barely detected in the AM, but accumulates at high levels in PPGL, mostly (but not exclusively) in those with loss-of-function mutations in VHL and genes encoding components of the succinate dehydrogenase (SDH) complex. This is associated with upregulation of EPAS1 and the HIF2α-regulated genes COX4I2 and ADORA2A. In contrast, HIF2α and HIF2α-regulated genes are highly expressed in CB and HNPGL, irrespective of VHL and SDH dysfunctions. We also found that HIF2α and HIF1α protein expressions are not correlated in PPGL nor HNPGL. In addition, HIF1α-target genes are almost exclusively overexpressed in VHL-mutated HNPGL/PPGL. Collectively, the data suggest that involvement of HIF2α in the physiology and tumor pathology of human paraganglia is organ-of-origin-dependent and HIF1α-independent.

2.
Pflugers Arch ; 473(2): 197-217, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33452554

RESUMO

Besides their crucial role in cell electrogenesis and maintenance of basal membrane potential, the voltage-dependent K+ channel Kv11.1/hERG1 shows an essential impact in cell proliferation and other processes linked to the maintenance of tumour phenotype. To check the possible influence of channel expression on DNA damage responses, HEK293 cells, treated with the genotoxic agent methyl methanesulfonate (MMS), were compared with those of a HEK-derived cell line (H36), permanently transfected with the Kv11.1-encoding gene, and with a third cell line (T2) obtained under identical conditions as H36, by permanent transfection of another unrelated plasma membrane protein encoding gene. In addition, to gain some insights about the canonical/conduction-dependent channel mechanisms that might be involved, the specific erg channel inhibitor E4031 was used as a tool. Our results indicate that the expression of Kv11.1 does not influence MMS-induced changes in cell cycle progression, because no differences were found between H36 and T2 cells. However, the canonical ion conduction function of the channel appeared to be associated with decreased cell viability at low/medium MMS concentrations. Moreover, direct DNA damage measurements, using the comet assay, demonstrated for the first time that Kv11.1 conduction activity was able to modify MMS-induced DNA damage, decreasing it particularly at high MMS concentration, in a way related to PARP1 gene expression. Finally, our data suggest that the canonical Kv11.1 effects may be relevant for tumour cell responses to anti-tumour therapies.


Assuntos
Antineoplásicos/farmacologia , Dano ao DNA , Canal de Potássio ERG1/metabolismo , Metanossulfonato de Metila/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Canal de Potássio ERG1/genética , Células HEK293 , Humanos , Potenciais da Membrana , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...