Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(26): 28008-28017, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38973904

RESUMO

Scientific interest in luminescent solar concentrators (LSCs) has reemerged mainly due to the application of semiconductor quantum dots (QDs) as highly efficient luminophores. Recently, LSCs have become attractive proposals for Building-Integrated photovoltaics (BIPV) since they could help conventional photovoltaics to improve sunlight harvesting and reduce production costs. However, most of the modern LSCs rely on heavy-metal QDs which are highly toxic and may cause environmental concerns. Additionally, their absorption spectra give them a characteristic color limiting their potential application in BIPV. Herein, we fabricated transparent and colorless LSCs by embedding nontoxic and cost-effective zinc oxide quantum dots (ZnO QDs) in a PMMA polymer matrix (ZnO-LSC), preserving the QD optical properties and PMMA transparency. The synthesized colloidal ZnO QDs have an average size of 5.5 nm, a hexagonal wurtzite crystalline structure, a broad yellow photoluminescent signal under ultraviolet excitation, and are highly visibly transparent at the employed concentrations (>95% in wavelengths above 400 nm). The optical characterization of the fabricated ZnO-LSCs showed a good visible transparency of 80.3% average visible transmission (AVT), with an LSC concentration factor (C) of 1.02. An optimal device (ZnO-LSC-O) could reach a C value of 2.66 with the combination of optical properties of colloidal ZnO QDs and PMMA. Finally, simulations of the performance of silicon solar cells coupled to the fabricated and optimal LSCs under standard AM 1.5G illumination were performed employing the software COMSOL Multiphysics. The fabricated ZnO-LSC achieved a simulated maximum power conversion efficiency (PCE) of 3.80%, while the optimal ZnO-LSC-O reached 5.45%. Also, the ZnO-LSC generated a maximum power of 15.02 mW and the ZnO-LSC-O generated 40.33 mW, employing the same active area as the simulated solar cell directly illuminated, which generated 14.39 mW. These results indicate that the ZnO QD-based LSCs may be useful as transparent photovoltaic windows for BIPV applications.

2.
Polymers (Basel) ; 13(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34070978

RESUMO

In this research, we conducted a systematic evaluation of the synthesis parameters of a multi-responsive core-shell nanocomposite (Fe3O4 nanoparticles coated by poly(N-isopropylacrylamide) (PNIPAM) in the presence of chitosan (CS) (Fe3O4@PNIPAM-CS). Scanning electron microscopy (SEM) was used to follow the size and morphology of the nanocomposite. The functionalization and the coating of Fe3O4 nanoparticles (Nps) were evaluated by the ζ-potential evolution and Fourier Transform infrared spectroscopy (FTIR). The nanocomposite exhibited a collapsed structure when the temperature was driven above the lower critical solution temperature (LCST), determined by dynamic light scattering (DLS). The LCST was successfully shifted from 33 to 39 °C, which opens the possibility of using it in physiological systems. A magnetometry test was performed to confirm the superparamagnetic behavior at room temperature. The obtained systems allow the possibility to control specific properties, such as particle size and morphology. Finally, we performed vincristine sulfate loading and release tests. Mathematical analysis reveals a two-stage structural-relaxation release model beyond the LCST. In contrast, a temperature of 25 °C promotes the diffusional release model. As a result, a more in-depth comprehension of the release kinetics was achieved. The synthesis and study of a magnetic core-shell nanoplatform offer a smart material as an alternative targeted release therapy due to its thermomagnetic properties.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 149: 240-53, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-25965171

RESUMO

2,4-Dinitrodiphenylamine (I), 2-nitro-4-(trifluoromethyl)aniline (II) and 4-bromo-2-nitroaniline (III) have been investigated by DFT and experimental FTIR, Raman and UV-Vis spectroscopies. The gas-phase molecular geometries were consistent with similar compounds already reported in the literature. From the vibrational analysis, the main functional groups were identified and their absorption bands were assigned. Some differences were found between the calculated and the experimental UV-Vis spectra. These differences were analyzed and explained in terms of the TD-DFT/B3LYP limitations, which were mainly attributed to charge-transfer (CT) effects. These findings were in agreement with previous works, which reported that TD-DFT/B3LYP calculations diverge from experimental results when the electronic transitions involve CT. Despite this, TD-DFT/B3LYP calculations provided satisfactory results and a detailed description of the electronic transitions involved in the absorption bands of the UV-Vis spectra. In terms of the NLO properties, it was found that compound (I) is a good candidate for NLO applications and deserves further study due to its good ß values. However, the ß values for compounds (II) and (III) were negatively affected compared to those found on o-nitroaniline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...