Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurol Sci ; 45(4): 1635-1643, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37875597

RESUMO

Juvenile myoclonic epilepsy (JME) is the most common of the generalized genetic epilepsies, with multiple causal and susceptibility genes; however, its etiopathogenesis is mainly unknown. The toxic effects caused by xenobiotics in cells occur during their metabolic transformation, mainly by enzymes belonging to cytochrome P450. The elimination of these compounds by transporters of the ABC type protects the central nervous system, but their accumulation causes neuronal damage, resulting in neurological diseases. The present study has sought the association between single nucleotide genetic variants of the CYP2C9, CYP2C19, and ABCB1 genes and the development of JME in patients compared to healthy controls. The CC1236 and GG2677 genotypes of ABCB1 in women; allele G 2677, genotypes GG 2677 and CC 3435 in men; the CYP2C19*2A allele, and the CYP2C19*3G/A genotype in both sexes were found to be risk factors for JME. Furthermore, carriers of the TTGGCC genotype combination of the ABCB1 gene (1236/2677/3435) have a 10.5 times higher risk of developing JME than non-carriers. Using the STRING database, we found an interaction between the proteins encoded by these genes and other possible proteins. These findings indicate that the CYP450 system and ABC transporters could interact with other genes in the JME.


Assuntos
Epilepsia Generalizada , Epilepsia Mioclônica Juvenil , Masculino , Humanos , Feminino , Epilepsia Mioclônica Juvenil/genética , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C19/genética , Genótipo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
2.
J Neurochem ; 160(2): 256-270, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34665461

RESUMO

Huntington´s disease (HD) is a pathological condition that can be studied in mice by the administration of quinolinic acid (QUIN), an agonist of the N-methyl-d-aspartate receptor (NMDAR) that induces NMDAR-mediated cytotoxicity and neuroinflammation. Mast cells (MCs) participate in numerous inflammatory processes through the release of important amounts of histamine (HA). In this study, we aimed to characterize the participation of MCs and HA in the establishment of neural and oxidative damage in the QUIN-induced model of HD. C57BL6/J mice (WT), MC-deficient c-KitW-sh/W-sh (Wsh) mice and Wsh mice reconstituted by intracerebroventricular (i.c.v.) injection of 5 × 105 bone marrow-derived mast cells (BMMCs), or i.c.v. administered with HA (5 µg) were used. All groups of animals were intrastriatally injected with 1 µL QUIN (30 nmol/µL) and 3 days later, apomorphine-induced circling behavior, striatal GABA levels and the number of Fluoro-Jade positive cells, as indicators of neuronal damage, were determined. Also, lipid peroxidation (LP) and reactive oxygen species production (ROS), as markers of oxidative damage, were analyzed. Wsh mice showed less QUIN-induced neuronal and oxidative damage than WT and Wsh-MC reconstituted animals. Histamine administration restored the QUIN-induced neuronal and oxidative damage in the non-reconstituted Wsh mice to levels equivalent or superior to those observed in WT mice. Our results demonstrate that MCs and HA participate in the neuronal and oxidative damages observed in mice subjected to the QUIN -induced model of Huntington's disease.


Assuntos
Histamina/imunologia , Doença de Huntington/imunologia , Doença de Huntington/patologia , Mastócitos/imunologia , Neurônios/patologia , Animais , Modelos Animais de Doenças , Feminino , Histamina/metabolismo , Doença de Huntington/induzido quimicamente , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ácido Quinolínico/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...