Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38790667

RESUMO

Recently, the development of functional beverages has been enhanced to promote health and nutritional well-being. Thus, the fermentation of plant foods with lactic acid bacteria can enhance their antioxidant capacity and others like anti-inflammatory activity, which may depend on the variations in the total content and profile of (poly)phenols. The present study aimed to investigate the impact of fermentation with two strains of Lactiplantibacillus plantarum of several herbal infusions from thyme, rosemary, echinacea, and pomegranate peel on the (poly)phenolic composition and whether lacto-fermentation can contribute to enhance their in vitro antioxidant and anti-inflammatory effects on human colon myofibroblast CCD18-Co cells. HPLC-MS/MS analyses revealed that fermentation increased the content of the phenolics present in all herbal infusions. In vitro analyses indicated that pomegranate infusion showed higher antioxidant and anti-inflammatory effects, followed by thyme, echinacea, and rosemary, based on the total phenolic content. After fermentation, despite increasing the content of phenolics, the antioxidant and anti-inflammatory effects via reduction pro-inflammatory markers (IL-6, IL-8 and PGE2) were similar to those of their corresponding non-fermented infusions, with the exception of a greater reduction in lacto-fermented thyme. Overall, the findings suggest that the consumption of lacto-fermented herbal infusions could be beneficial in alleviating intestinal inflammatory disorders.

2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339018

RESUMO

Echinacea purpurea L. (EP) preparations are globally popular herbal supplements known for their medicinal benefits, including anti-inflammatory activities, partly related to their phenolic composition. However, regarding their use for the management of inflammation-related intestinal diseases, the knowledge about the fate of orally ingested constituents throughout the human gastrointestinal tract and the exposition of in vitro digested extracts in relevant inflammatory models are unknown. This study investigated for the first time the impact of in vitro gastrointestinal digestion (INFOGEST) on the phenolic composition and anti-inflammatory properties of EP extracts from flowers (EF), leaves (EL), and roots (ER) on IL-1ß-treated human colon-derived CCD-18Co cells. Among the seven hydroxycinnamic acids identified using HPLC-UV-MS/MS, chicoric and caftaric acids showed the highest concentrations in EL, followed by EF and ER, and all extracts exerted significant reductions in IL-6, IL-8, and PGE2 levels. After digestion, despite reducing the bioaccessibility of their phenolics, the anti-inflammatory effects were preserved for digested EL and, to a lesser extent, for EF, but not for digested ER. The lower phenolic content in digested EF and ER could explain these findings. Overall, this study emphasizes the potential of EP in alleviating intestinal inflammatory conditions and related disorders.


Assuntos
Echinacea , Espectrometria de Massas em Tandem , Humanos , Extratos Vegetais/farmacologia , Folhas de Planta , Anti-Inflamatórios/farmacologia , Colo
3.
Food Funct ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078511

RESUMO

Current knowledge indicates that the consumption of isoflavone-rich foodstuffs can have a beneficial impact on cardiovascular health. To what extent these isoflavones act as the main actors of that benefit is less clear. Genistein (GEN), daidzein (DAZ), and the DAZ-derived microbial metabolite equol (Eq) exhibit antiangiogenic effects in vitro, but their low bloodstream concentrations make it difficult to rationalize the in vivo effects. Their derived phase-II metabolites (glucuronides and sulfates) are major metabolites found in plasma, but their role as antiangiogenic molecules remains unexplored. We aimed here to first assess the anti-angiogenic activities of the main circulating isoflavone metabolites (glucuronides and sulfates) and compare them with their corresponding free forms at physiological concentrations (0.1-10 µM). The effects of the conjugated vs. free forms on tubulogenesis, cell migration, and VEGF-induced signalling were investigated in primary human aortic endothelial cells (HAECs). While (R,S)-equol 7-ß-D-glucuronide (Eq 7-glur) exerted dose-dependent inhibition of tubulogenesis and endothelial migration comparable to that exerted by the free forms (GEN, DAZ, and Eq), the rest of the phase-II conjugates exhibited no significant effects. The underlying molecular mechanisms were independent of the bFGF but related to the modulation of the VEGF pathway. Besides, the observed dissimilar cellular metabolism (conjugation/deconjugation) places the phase-II metabolites as precursors of the free forms; however, the question of whether this metabolism impacts their biological activity requires additional studies. These new insights suggest that isoflavones and their circulating metabolites, including Eq 7-glur, may be involved in cardiovascular health (e.g., targeting angiogenesis).

4.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069296

RESUMO

Despite researchers' and clinicians' exponential understanding of chronic diseases' complexity, ranging from cancer, diabetes, and neurodegenerative disorders, we still have a lot of unanswered questions on pathobiology mechanisms, wherein inflammation is central [...].


Assuntos
Cognição , Diabetes Mellitus , Humanos , Inflamação
5.
Biomed Pharmacother ; 167: 115413, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683593

RESUMO

Sesquiterpene lactones - such as those found in chicory - are considered promising bioactive compounds. These small molecules have shown several health benefits for various diseases, including brain disorders. However, it is unknown whether these compounds can cross the blood-brain barrier (BBB), and which could be the effects on brain microvascular endothelial cells. We show that six sesquiterpene lactones evaluated in an in vitro model of the BBB have different capacities to be transported through the barrier. Costunolide presented more than 20 % of transport while lactucin, 11ß-13-dihydrolactucin, 11ß-13-dihydrolactucopicrin, and parthenolide presented between 10 % and 20 %, whilst almost no transport was detected for lactucopicrin. Furthermore, costunolide and parthenolide reduced P-gp ABC transporter expression alongside an increase in caveolin-1, the main protein of caveolae. Remarkably, these two compounds improved barrier tightness by increasing the expression of both tight and adherens junctions. These findings open a new avenue to explore costunolide and parthenolide as promising compounds for brain therapies.


Assuntos
Barreira Hematoencefálica , Sesquiterpenos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Lactonas/farmacologia , Sesquiterpenos/farmacologia
6.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240254

RESUMO

Traumatic brain injury (TBI) remains one of the leading causes of death and disability in young adults worldwide. Despite growing evidence and advances in our knowledge regarding the multifaceted pathophysiology of TBI, the underlying mechanisms, though, are still to be fully elucidated. Whereas initial brain insult involves acute and irreversible primary damage to the brain, the processes of subsequent secondary brain injury progress gradually over months to years, providing a window of opportunity for therapeutic interventions. To date, extensive research has been focused on the identification of druggable targets involved in these processes. Despite several decades of successful pre-clinical studies and very promising results, when transferred to clinics, these drugs showed, at best, modest beneficial effects, but more often, an absence of effects or even very harsh side effects in TBI patients. This reality has highlighted the need for novel approaches that will be able to respond to the complexity of the TBI and tackle TBI pathological processes on multiple levels. Recent evidence strongly indicates that nutritional interventions may provide a unique opportunity to enhance the repair processes after TBI. Dietary (poly)phenols, a big class of compounds abundantly found in fruits and vegetables, have emerged in the past few years as promising agents to be used in TBI settings due to their proven pleiotropic effects. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by a state-of-the-art summary of the studies that have evaluated the efficacy of (poly)phenols administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. The current limitations on our knowledge concerning (poly)phenol effects in TBI in the pre-clinical studies are also discussed.


Assuntos
Lesões Encefálicas Traumáticas , Neoplasias Encefálicas , Animais , Fenóis/uso terapêutico , Encéfalo/patologia , Modelos Animais , Neoplasias Encefálicas/patologia
7.
Redox Biol ; 61: 102622, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36812782

RESUMO

The Aryl Hydrocarbon Receptor (AHR) is a ligand-dependent transcription factor able to control complex transcriptional processes in several cell types, which has been correlated with various diseases, including inflammatory bowel diseases (IBD). Numerous studies have described different compounds as ligands of this receptor, like xenobiotics, natural compounds, and several host-derived metabolites. Dietary (poly)phenols have been studied regarding their pleiotropic activities (e.g., neuroprotective and anti-inflammatory), but their AHR modulatory capabilities have also been considered. However, dietary (poly)phenols are submitted to extensive metabolism in the gut (e.g., gut microbiota). Thus, the resulting gut phenolic metabolites could be key players modulating AHR since they are the ones that reach the cells and may exert effects on the AHR throughout the gut and other organs. This review aims at a comprehensive search for the most abundant gut phenolic metabolites detected and quantified in humans to understand how many have been described as AHR modulators and what could be their impact on inflammatory gut processes. Even though several phenolic compounds have been studied regarding their anti-inflammatory capacities, only 1 gut phenolic metabolite, described as AHR modulator, has been evaluated on intestinal inflammatory models. Searching for AHR ligands could be a novel strategy against IBD.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo , Inflamação , Regulação da Expressão Gênica
8.
Nutrients ; 14(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364873

RESUMO

Previous studies have shown that a resistant dextrin soluble fibre has prebiotic properties with related health benefits on blood glucose management and satiety. Our aim was to demonstrate the effects of continuous administration of resistant dextrin on intestinal gas production, digestive sensations, and gut microbiota metabolism and composition. Healthy subjects (n = 20) were given resistant dextrin (14 g/d NUTRIOSE®, Roquette Frères, Lestrem, France) for four weeks. Outcomes were measured before, at the beginning, end, and two weeks after administration: anal evacuations of gas during daytime; digestive perception, girth, and gas production in response to a standard meal; sensory and digestive responses to a comfort meal; volume of colonic biomass by magnetic resonance; taxonomy and metabolic functions of fecal microbiota by shotgun sequencing; metabolomics in urine. Dextrin administration produced an initial increase in intestinal gas production and gas-related sensations, followed by a subsequent decrease, which magnified after discontinuation. Dextrin enlarged the volume of colonic biomass, inducing changes in microbial metabolism and composition with an increase in short chain fatty acids-producing species and modulation of bile acids and biotin metabolism. These data indicate that consumption of a soluble fibre induces an adaptative response of gut microbiota towards fermentative pathways with lower gas production.


Assuntos
Dextrinas , Microbiota , Humanos , Dextrinas/farmacologia , Intestinos , Prebióticos , Fezes , Homeostase
9.
Nutrients ; 14(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36079893

RESUMO

Exosomes are extracellular vesicles (EVs) that regulate intercellular signaling by transferring small RNAs, proteins, nucleic acids, lipids, and other metabolites to local or distant organs, including the brain, by crossing the blood-brain barrier. However, the transport of (poly)phenols in human EVs has not yet been described. Therefore, we aimed here to explore (i) whether resveratrol and (or) its derived metabolites are found in the cargo of human plasma exosome-containing EVs (E-EVs), (ii) when this incorporation occurs, and (iii) whether resveratrol intake stimulates the release of E-EVs. Thus, in a pharmacokinetic study, healthy volunteers (n = 16) consumed 1 capsule (420 mg resveratrol) in the evening before attending the clinic and one more capsule on the day of the pharmacokinetics. The plasma and the isolated E-EVs were analyzed using UPLC-ESI-QTOF-MS. Of 17 metabolites in the plasma, 9 were identified in the E-EVs, but not free resveratrol. The kinetic profiles of resveratrol metabolites were similar in the plasma and the E-EVs, a higher metabolite concentration being detected in the plasma than in the E-EVs. However, the plasma/E-EVs ratio decreased in the gut microbial metabolites, suggesting their better encapsulation efficiency in E-EVs. In addition, glucuronide conjugates of resveratrol, dihydroresveratrol, and lunularin were incorporated into the E-EVs more efficiently than their corresponding sulfates despite glucuronides reaching lower plasma concentrations. Notably, more E-EVs were detected 10 h after resveratrol consumption. This exploratory study provides the first evidence that (i) resveratrol metabolites are transported by E-EVs, with a preference for glucuronide vs. sulfates, (ii) the gut microbial metabolites concentration and kinetic profiles are closely similar in E-EVs and plasma, and (iii) resveratrol intake elicits E-EVs secretion. Overall, these results open new research avenues on the possible role of E-EVs in (poly)phenol health effects.


Assuntos
Exossomos , Vesículas Extracelulares , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Glucuronídeos/metabolismo , Humanos , Resveratrol , Sulfatos
10.
Compr Rev Food Sci Food Saf ; 21(5): 3931-3962, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36037277

RESUMO

A large number of epidemiological studies have shown that consumption of fruits, vegetables, and beverages rich in (poly)phenols promote numerous health benefits from cardiovascular to neurological diseases. Evidence on (poly)phenols has been applied mainly to flavonoids, yet the role of phenolic acids has been largely overlooked. Such phenolics present in food combine with those resulting from gut microbiota catabolism of flavonoids and chlorogenic acids and those produced by endogenous pathways, resulting in large concentrations of low molecular weight phenolic metabolites in human circulation. Independently of the origin, in human intervention studies using diets rich in (poly)phenols, a total of 137 low molecular weight phenolic metabolites have been detected and quantified in human circulation with largely unknown biological function. In this review, we will pinpoint two main aspects of the low molecular weight phenolic metabolites: (i) the microbiota responsible for their generation, and (ii) the analysis (quali- and quantitative) in human circulation and their respective pharmacokinetics. In doing so, we aim to drive scientific advances regarding the ubiquitous roles of low molecular weight phenolic metabolites using physiologically relevant concentrations and under (patho)physiologically relevant conditions in humans.


Assuntos
Dieta , Fenóis , Flavonoides/metabolismo , Frutas , Humanos , Peso Molecular
11.
Food Funct ; 13(17): 8977-8988, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35938740

RESUMO

SARS-CoV-2 is a highly transmissible and pathogenic coronavirus causing a respiratory disease that emerged in 2019, leading to a public health emergency situation which continues to date. The treatment options are still very limited and vaccines available are less effective against new variants. SARS-CoV-2 enzymes, namely main protease (Mpro) and papain-like protease (PLpro), play a pivotal role in the viral life cycle, making them a putative drug target. Here, we described for the first time the potential inhibitory activity of chicory extract against both proteases. Besides, we have identified that the four most abundant sesquiterpene lactones in chicory inhibited these proteases, showing an effective binding in the active sites of Mpro and PLpro. This paper provides new insight for further drug development or food-based strategies for the prevention of SARS-CoV-2 by targeting viral proteases.


Assuntos
Tratamento Farmacológico da COVID-19 , Cichorium intybus , Sesquiterpenos , Cichorium intybus/química , Cichorium intybus/metabolismo , Humanos , Lactonas/farmacologia , Peptídeo Hidrolases/metabolismo , SARS-CoV-2 , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Replicação Viral
12.
Food Chem Toxicol ; 166: 113254, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35752269

RESUMO

Angiogenesis is a complex process encompassing endothelial cell proliferation, migration, and tube formation. While numerous studies describe that curcumin exerts antitumor properties (e.g., targeting angiogenesis), information regarding other dietary curcuminoids such as demethoxycurcumin (DMC) and bisdemethoxycurcumin (BisDMC) is scant. In this study, we evaluated the antiangiogenic activities of these three curcuminoids at physiological concentrations (0.1-5 µM) on endothelial cell migration and tubulogenesis and the underlying associated mechanisms on human aortic endothelial cells (HAECs). Results showed that the individual compounds and a representative mixture inhibited the tubulogenic and migration capacity of endothelial cells dose-dependently, while sparing cell viability. Notably, DMC and BisDMC at 0.1 and 1 µM showed higher capacity than curcumin inhibiting tubulogenesis. These compounds also reduced phosphorylation of the VEGFR2 and the downstream ERK and Akt pathways in VEGF165-stimulated cells. In silico analysis showed that curcuminoids could bind the VEGFR2 antagonizing the VEGF-mediated angiogenesis. These findings suggest that physiologically concentrations of curcuminoids might counteract pro-angiogenic stimuli relevant to tumorigenic processes.


Assuntos
Diarileptanoides , Neovascularização Patológica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/farmacologia , Movimento Celular , Proliferação de Células , Curcumina/uso terapêutico , Diarileptanoides/metabolismo , Diarileptanoides/farmacologia , Diarileptanoides/uso terapêutico , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Mol Nutr Food Res ; 66(21): e2101019, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35118817

RESUMO

Urolithins, metabolites produced by the gut microbiota from the polyphenols ellagitannins and ellagic acid, are discovered by the research group in humans almost 20 years ago. Pioneering research suggests urolithins as pleiotropic bioactive contributors to explain the health benefits after consuming ellagitannin-rich sources (pomegranates, walnuts, strawberries, etc.). Here, this study comprehensively updates the knowledge on urolithins, emphasizing the review of the literature published during the last 5 years. To date, 13 urolithins and their corresponding conjugated metabolites (glucuronides, sulfates, etc.) have been described and, depending on the urolithin, detected in different human fluids and tissues (urine, blood, feces, breastmilk, prostate, colon, and breast tissues). There has been a substantial advance in the research on microorganisms involved in urolithin production, along with the compositional and functional characterization of the gut microbiota associated with urolithins metabolism that gives rise to the so-called urolithin metabotypes (UM-A, UM-B, and UM-0), relevant in human health. The design of in vitro studies using physiologically relevant assay conditions (molecular forms and concentrations) is still a pending subject, making some reported urolithin activities questionable. In contrast, remarkable progress has been made in the research on the safety, bioactivity, and associated mechanisms of urolithin A, including the first human interventions.


Assuntos
Microbioma Gastrointestinal , Juglans , Masculino , Humanos , Microbioma Gastrointestinal/fisiologia , Cumarínicos/farmacologia , Cumarínicos/metabolismo , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/metabolismo , Fezes , Ácido Elágico
14.
Mol Nutr Food Res ; 65(12): e2100163, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33939887

RESUMO

SCOPE: Some polyphenol-derived metabolites reach human breast cancer (BC) tissues at concentrations that induce cell senescence. However, this is unknown for isoflavones, curcuminoids, and lignans. Here, their metabolic profiling in normal (NT) and malignant (MT) mammary tissues of newly-diagnosed BC patients and the tissue-occurring metabolites' anticancer activity are evaluated. METHODS AND RESULTS: Patients (n = 26) consumed 3 capsules/day (turmeric, red clover, and flaxseed extracts plus resveratrol; 296.4 mg phenolics/capsule) from biopsy-confirmed diagnosis to surgery (5 ± 2 days) or did not consume capsules (n = 13). NT and MT, blood, and urine are analyzed by UPLC-QTOF-MS using targeted metabolomics. Anticancer activity was tested in MCF-7 and MDA-MB-231 BC cells. Mainly phase-II metabolites were detected (108, 84, 49, and 47 in urine, plasma, NT, and MT, respectively). Total metabolite concentrations reached 10.7 ± 11.1 and 2.5 ± 2.4 µmol L-1 in NT and MT, respectively. Free curcumin, but not its glucuronide, was detected in the tissues (1.1 ± 1.8 and 0.2 ± 0.2 µmol L-1 in NT and MT, respectively). Breast tissue-occurring metabolites' antiproliferation was mainly exerted in p53-wild-type MCF-7 cells by curcuminoids through cell cycle arrest, senescence, and apoptosis induction via p53/p21 induction, while isoflavone-derived metabolites exerted estrogenic-like activity. CONCLUSION: Curcuminoids could be coadjuvants that might help fight BC upon regular consumption.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Polifenóis/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Fitogênicos/farmacocinética , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Cápsulas , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Curcumina/farmacocinética , Curcumina/farmacologia , Suplementos Nutricionais , Moduladores de Receptor Estrogênico/farmacologia , Feminino , Humanos , Pessoa de Meia-Idade , Polifenóis/metabolismo , Polifenóis/farmacocinética
15.
Antioxidants (Basel) ; 10(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799874

RESUMO

The intake of hesperidin-rich sources, mostly found in orange juice, can decrease cardiometabolic risk, potentially linked to the gut microbial phase-II hesperetin derivatives. However, the low hesperidin solubility hampers its bioavailability and microbial metabolism, yielding a high inter-individual variability (high vs. low-producers) that prevents consistent health-related evidence. Contrarily, the human metabolism of (lemon) eriocitrin is hardly known. We hypothesize that the higher solubility of (lemon) eriocitrin vs. (orange) hesperidin might yield more bioavailable metabolites than hesperidin. A randomized-crossover human pharmacokinetic study (n = 16) compared the bioavailability and metabolism of flavanones from lemon and orange extracts and postprandial changes in oxidative, inflammatory, and metabolic markers after a high-fat-high-sugars meal. A total of 17 phase-II flavanone-derived metabolites were identified. No significant biomarker changes were observed. Plasma and urinary concentrations of all metabolites, including hesperetin metabolites, were higher after lemon extract intake. Total plasma metabolites showed significantly mean lower Tmax (6.0 ± 0.4 vs. 8.0 ± 0.5 h) and higher Cmax and AUC values after lemon extract intake. We provide new insights on hesperetin-eriodictyol interconversion and naringenin formation from hesperidin in humans. Our results suggest that regular consumption of a soluble and eco-friendly eriocitrin-rich lemon extract could provide a circulating concentration metabolites threshold to exert health benefits, even in the so-called low-producers.

16.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32784973

RESUMO

Breast cancer (BC) is the most common malignancy and the leading cause of cancer-related death in adult women worldwide. Over 85% of BC cases are non-hereditary, caused by modifiable extrinsic factors related to lifestyle, including dietary habits, which play a crucial role in cancer prevention. Although many epidemiological and observational studies have inversely correlated the fruit and vegetable consumption with the BC incidence, the involvement of their phenolic content in this correlation remains contradictory. During decades, wrong approaches that did not consider the bioavailability, metabolism, and breast tissue distribution of dietary phenolics persist behind the large currently existing gap between preclinical and clinical research. In the present review, we provide comprehensive preclinical and clinical evidence according to physiologically relevant in vitro and in vivo studies. Some dietary phenolics such as resveratrol (RSV), quercetin, isoflavones, epigallocatechin gallate (EGCG), lignans, and curcumin are gaining attention for their chemopreventive properties in preclinical research. However, the clinical evidence of dietary phenolics as BC chemopreventive compounds is still inconclusive. Therefore, the only way to validate promising preclinical results is to conduct clinical trials in BC patients. In this regard, future perspectives on dietary phenolics and BC research are also critically discussed.


Assuntos
Anticarcinógenos/uso terapêutico , Neoplasias da Mama/prevenção & controle , Quimioprevenção/métodos , Suplementos Nutricionais , Flavonoides/uso terapêutico , Fenóis/uso terapêutico , Animais , Anticarcinógenos/farmacocinética , Disponibilidade Biológica , Neoplasias da Mama/epidemiologia , Ensaios Clínicos como Assunto , Dieta , Modelos Animais de Doenças , Feminino , Flavonoides/farmacocinética , Humanos , Incidência , Fenóis/farmacocinética
17.
Food Chem Toxicol ; 139: 111260, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32179165

RESUMO

The promotion of senescence in cancer cells by dietary (poly)phenols gained attention as a promising chemopreventive strategy against colorectal (CRC) and other cancers. Urolithins (Uros) are ellagitannins and ellagic acid-derived gut microbiota metabolites that reach high concentrations in the human colon. They were postulated to be as potential anticancer agents in different CRC models, but their role as promoters of cellular senescence has never been comprehensively evaluated. We evaluated long-term senescent-mediated chemoprevention of physiologically relevant doses of different Uros and representative mixtures of human urolithin metabotypes in human CRC (HCT-116, Caco-2, and HT-29) and non-tumorigenic (CCD18-Co) cell lines. Our results show that Uro-A (but not Uro-C, IsoUro-A, or Uro-B) leads to a dose-dependent anti-clonogenic effect through the increase of the senescence-associated ß-galactosidase activity, rather than by reversible cell cycle arrest and(or) apoptosis which require much higher concentrations. Senescence was accompanied by an elevated p53 and p21Cip1/Waf1 expression in HCT-116 cells (p53-wild type), but not in other CRC lines with p53 mutated or non-tumorigenic cells, which suggests that long-term senescence-mediated chemoprevention is a p53-dependent manner. Moreover, the ATP-binding cassette transporters and the phase-II metabolism of Uros limited the induction of senescence, which anticipates lower effects of conjugated Uros against systemic cancers.


Assuntos
Cumarínicos/metabolismo , Microbioma Gastrointestinal , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Células CACO-2 , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colo/metabolismo , Colo/microbiologia , Ensaio de Unidades Formadoras de Colônias , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Taninos Hidrolisáveis/metabolismo , beta-Galactosidase/metabolismo
18.
Mol Nutr Food Res ; 63(22): e1900629, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31441212

RESUMO

SCOPE: Recent evidence demonstrates that resveratrol (RSV) metabolites, but not free RSV, reach malignant tumors (MT) in breast cancer (BC) patients. Since these metabolites, as detected in MT, do not exert short-term antiproliferative or estrogenic/antiestrogenic activities, long-term tumor-senescent chemoprevention has been hypothesized. Consequently, here, for the first time, whether physiologically relevant RSV metabolites can induce senescence in BC cells is investigated. METHODS AND RESULTS: Human BC MCF-7 (wild-type p53) and MDA-MB-231 (mutant p53), and non-tumorigenic MCF-10A cells are treated with free RSV and physiological-derived metabolites (RSV 3-O-glucuronide, RSV 3-O-sulfate, RSV 4'-O-sulfate, dihydroresveratrol (DH-RSV), and DH-RSV 3-Oglucuronide). Cellular senescence is measured by SA-ß-gal activity and senescence-associated markers (p53, p21Cip1/Waf1 , p16INK4a , and phosphorylation status of retinoblastoma (pRb/tRb)). Although no effect is observed in MDA-MB-231 and normal cells, RSV metabolites induce cellular senescence in MCF-7 cells by reducing their clonogenic capacity and arresting cell cycle at G2 M/S phase, but do not induce apoptosis. Senescence is induced through the p53/p21Cip1/Waf1 and p16INK4a /Rb pathways, depending on the RSV metabolite, and requires ABC transporters, but not estrogen receptors. CONCLUSIONS: These data suggest that RSV metabolites, as found in MT from BC patients, are not de-conjugated to release free RSV, but enter the cells and may exert long-term tumor-senescent chemoprevention.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Neoplasias da Mama/tratamento farmacológico , Senescência Celular/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Resveratrol/metabolismo , Proteína do Retinoblastoma/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Feminino , Glucuronídeos/farmacologia , Humanos , Células MCF-7 , Resveratrol/farmacologia , Transdução de Sinais/fisiologia , Estilbenos/farmacologia
19.
Mol Nutr Food Res ; 63(9): e1801239, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30690879

RESUMO

SCOPE: Dietary polyphenols may protect against breast cancer. However, it is unknown whether polyphenols reach human malignant breast tumors in molecular forms and(or) at concentrations likely to act against cancer. METHODS AND RESULTS: Ninteen breast cancer patients consumed three capsules daily from biopsy-confirmed diagnosis to surgery (6 ± 2 days). The capsules contained pomegranate, orange, lemon, olive, cocoa, and grapeseed extracts plus resveratrol, providing 37 different phenolics (473.7 mg), theobromine and caffeine (19.7 mg). A total of 101 metabolites are identified in urine, 69 in plasma, 39 in normal (NT), and 33 in malignant (MT) tissues by UPLC-ESI-QTOF-MS. Eight control patients did not consume extracts. Phenolic-derived metabolites in MT and NT are mainly glucuronidated and(or) sulfated. Some representative metabolites detected in MT (median and range, pmol g-1 ) are urolithin-A-3-O-glucuronide (26.2; 3.2-66.5), 2,5-dihydroxybenzoic acid (40.2; 27.7-52.2), resveratrol-3-O-sulfate (86.4; 7.8-224.4), dihydroresveratrol-3-O-glucuronide (109.9; 10.3-229.4), and theobromine (715.0; 153.9-3,216). Metabolites, as detected in breast tissues, do not exert antiproliferative or estrogenic/antiestrogenic activities in MCF-7 breast cancer cells. CONCLUSION: This is the first study that describes the metabolic profiling of dietary phenolics and methylxanthines in MT and NT comprehensively. Although phase-II conjugation might hamper a direct anticancer activity, long-term tumor-senescent chemoprevention cannot be discarded.


Assuntos
Antineoplásicos/farmacocinética , Neoplasias da Mama/dietoterapia , Polifenóis/farmacocinética , Xantinas/farmacocinética , Adulto , Idoso , Neoplasias da Mama/metabolismo , Neoplasias da Mama/cirurgia , Neoplasias da Mama Masculina/dietoterapia , Neoplasias da Mama Masculina/metabolismo , Neoplasias da Mama Masculina/cirurgia , Cafeína/farmacocinética , Proliferação de Células/efeitos dos fármacos , Suplementos Nutricionais , Feminino , Humanos , Células MCF-7 , Masculino , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/metabolismo , Pessoa de Meia-Idade , Teobromina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...