Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8436, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589812

RESUMO

Previous studies indicate sex differences in incidence and severity of bloodstream infections (BSI). We examined the effect of sex on risk of BSI, BSI mortality, and BSI caused by the most common infecting bacteria. Using causal mediation analyses, we assessed if this effect is mediated by health behaviours (smoking, alcohol consumption), education, cardiovascular risk factors (systolic blood pressure, non-HDL cholesterol, body mass index) and selected comorbidities. This prospective study included 64,040 participants (46.8% men) in the population-based HUNT2 Survey (1995-1997) linked with hospital records in incident BSI. During median follow-up of 15.2 years, 1840 (2.9%) participants (51.3% men) experienced a BSI and 396 (0.6%) died (56.6% men). Men had 41% higher risk of first-time BSI (95% confidence interval (CI), 28-54%) than women. Together, health behaviours, education, cardiovascular risk factors and comorbidities mediated 34% of the excess risk of BSI observed in men. The HR of BSI mortality was 1.87 (95% CI 1.53-2.28), for BSI due to S. aureus 2.09 (1.28-2.54), S. pneumoniae 1.36 (1.05-1.76), E. coli 0.97 (0.84-1.13) in men vs women. This study shows that men have higher risk of BSI and BSI mortality than women. One-third of this effect was mediated by potential modifiable risk factors for incident BSI.


Assuntos
Bacteriemia , Sepse , Bacteriemia/microbiologia , Escherichia coli , Feminino , Humanos , Masculino , Análise de Mediação , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco , Sepse/epidemiologia , Caracteres Sexuais , Staphylococcus aureus , Streptococcus pneumoniae
2.
Nat Commun ; 11(1): 2270, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385301

RESUMO

Mycobacterium tuberculosis is a global health problem in part as a result of extensive cytotoxicity caused by the infection. Here, we show how M. tuberculosis causes caspase-1/NLRP3/gasdermin D-mediated pyroptosis of human monocytes and macrophages. A type VII secretion system (ESX-1) mediated, contact-induced plasma membrane damage response occurs during phagocytosis of bacteria. Alternatively, this can occur from the cytosolic side of the plasma membrane after phagosomal rupture in infected macrophages. This damage causes K+ efflux and activation of NLRP3-dependent IL-1ß release and pyroptosis, facilitating the spread of bacteria to neighbouring cells. A dynamic interplay of pyroptosis with ESCRT-mediated plasma membrane repair also occurs. This dual plasma membrane damage seems to be a common mechanism for NLRP3 activators that function through lysosomal damage.


Assuntos
Membrana Celular/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Tuberculose/metabolismo , Tuberculose/patologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Catepsinas/metabolismo , Membrana Celular/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Inflamassomos/metabolismo , Inflamassomos/ultraestrutura , Mitocôndrias/metabolismo , Mycobacterium tuberculosis/metabolismo , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Células THP-1
3.
Front Plant Sci ; 6: 364, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042144

RESUMO

Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants.

4.
Front Plant Sci ; 6: 277, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25954298

RESUMO

Allyl isothiocyanate (AITC) is a phytochemical associated with plant defense in plants from the Brassicaceae family. AITC has long been recognized as a countermeasure against external threats, but recent reports suggest that AITC is also involved in the onset of defense-related mechanisms such as the regulation of stomatal aperture. However, the underlying cellular modes of action in plants remain scarcely investigated. Here we report evidence of an AITC-induced depletion of glutathione (GSH) and the effect on gene expression of the detoxification enzyme family glutathione S-transferases (GSTs) in Arabidopsis thaliana. Treatment of A. thaliana wild-type with AITC resulted in a time- and dose-dependent depletion of cellular GSH. AITC-exposure of mutant lines vtc1 and pad2-1 with elevated and reduced GSH-levels, displayed enhanced and decreased AITC-tolerance, respectively. AITC-exposure also led to increased ROS-levels in the roots and loss of chlorophyll which are symptoms of oxidative stress. Following exposure to AITC, we found that GSH rapidly recovered to the same level as in the control plant, suggesting an effective route for replenishment of GSH or a rapid detoxification of AITC. Transcriptional analysis of genes encoding GSTs showed an upregulation in response to AITC. These findings demonstrate cellular effects by AITC involving a reversible depletion of the GSH-pool, induced oxidative stress, and elevated expression of GST-encoding genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...