Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 199: 106804, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38763448

RESUMO

Lung cancer is one of the most common cancers and a leading cause of death, with poor prognosis and high unmet clinical need. Chemotherapy is a common part of the treatment, either alone or in combination with other treatment modalities, but with limited efficacy and severe side effects. Encapsulation of drugs into nanoparticles can enable a more targeted delivery with reduced off-target toxicity. Delivery to the lungs is however often insufficient due to various biological barriers in the body and in the tumor microenvironment. Here we demonstrate that by incorporating drug-loaded nanoparticles into air-filled microbubbles, a more effective targeting to the lungs can be achieved. Fluorescence imaging and mass spectrometry revealed that the microbubbles could significantly improve accumulation of drug in the lungs of mice, compared to injecting either the free drug by itself or only the drug-loaded nanoparticles. Therapeutic efficacy was verified in a preclinical mouse model with non-small cell lung cancer, monitoring tumor growth by luminescence.


Assuntos
Neoplasias Pulmonares , Microbolhas , Nanopartículas , Animais , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/administração & dosagem , Nanopartículas/química , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Feminino , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Células A549
2.
Int J Nanomedicine ; 19: 3009-3029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562610

RESUMO

Background: Biodegradable poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs) are receiving increasing attention in anti-cancer nanomedicine development not only for targeted cancer chemotherapy, but also for modulation of the tumor microenvironment. We previously reported promising results with cabazitaxel (CBZ) loaded poly(2-ethylbutyl cyanoacrylate) NPs (PEBCA-CBZ NPs) in a patient derived xenograft (PDX) model of triple-negative breast cancer, and this was associated with a decrease in M2 macrophages. The present study aims at comparing two endotoxin-free PACA NP variants (PEBCA and poly(2-ethylhexyl cyanoacrylate); PEHCA), loaded with CBZ and test whether conjugation with folate would improve their effect. Methods: Cytotoxicity assays and cellular uptake of NPs by flow cytometry were performed in different breast cancer cells. Biodistribution and efficacy studies were performed in PDX models of breast cancer. Tumor associated immune cells were analyzed by multiparametric flow cytometry. Results: In vitro studies showed similar NP-induced cytotoxicity patterns despite difference in early NP internalization. On intravenous injection, the liver cleared the majority of NPs. Efficacy studies in the HBCx39 PDX model demonstrated an enhanced effect of drug-loaded PEBCA variants compared with free drug and PEHCA NPs. Furthermore, the folate conjugated PEBCA variant did not show any enhanced effects compared with the unconjugated counterpart which might be due to unfavorable orientation of folate on the NPs. Finally, analyses of the immune cell populations in tumors revealed that treatment with drug loaded PEBCA variants affected the myeloid cells, especially macrophages, contributing to an inflammatory, immune activated tumor microenvironment. Conclusion: We report for the first time, comparative efficacy of PEBCA and PEHCA NP variants in triple negative breast cancer models and show that CBZ-loaded PEBCA NPs exhibit a combined effect on tumor cells and on the tumor associated myeloid compartment, which may boost the anti-tumor response.


Assuntos
Neoplasias da Mama , Nanopartículas , Taxoides , Humanos , Feminino , Portadores de Fármacos , Distribuição Tecidual , Cianoacrilatos , Neoplasias da Mama/tratamento farmacológico , Ácido Fólico , Linhagem Celular Tumoral , Microambiente Tumoral
3.
ACS Appl Bio Mater ; 6(9): 3790-3797, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37647213

RESUMO

There is an urgent need for simple and non-invasive identification of live neural stem/progenitor cells (NSPCs) in the developing and adult brain as well as in disease, such as in brain tumors, due to the potential clinical importance in prognosis, diagnosis, and treatment of diseases of the nervous system. Here, we report a luminescent conjugated oligothiophene (LCO), named p-HTMI, for non-invasive and non-amplified real-time detection of live human patient-derived glioblastoma (GBM) stem cell-like cells and NSPCs. While p-HTMI stained only a small fraction of other cell types investigated, the mere addition of p-HTMI to the cell culture resulted in efficient detection of NSPCs or GBM cells from rodents and humans within minutes. p-HTMI is functionalized with a methylated imidazole moiety resembling the side chain of histidine/histamine, and non-methylated analogues were not functional. Cell sorting experiments of human GBM cells demonstrated that p-HTMI labeled the same cell population as CD271, a proposed marker for stem cell-like cells and rapidly migrating cells in glioblastoma. Our results suggest that the LCO p-HTMI is a versatile tool for immediate and selective detection of neural and glioma stem and progenitor cells.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Neurais , Adulto , Humanos , Glioblastoma/diagnóstico , Encéfalo , Neoplasias Encefálicas/diagnóstico , Adapaleno
4.
J Alzheimers Dis ; 93(2): 411-419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37038807

RESUMO

BACKGROUND: Early detection of amyloid-ß (Aß) aggregates is a critical step to improve the treatment of Alzheimer's disease (AD) because neuronal damage by the Aß aggregates occurs before clinical symptoms are apparent. We have previously shown that luminescent conjugated oligothiophenes (LCOs), which are highly specific towards protein aggregates of Aß, can be used to fluorescently label amyloid plaque in living rodents. OBJECTIVE: We hypothesize that the LCO can be used to target gadolinium to the amyloid plaque and hence make the plaque detectable by T1-weighted magnetic resonance imaging (MRI). METHODS: A novel LCO-gadolinium construct was synthesized to selectively bind to Aß plaques and give contrast in conventional T1-weighted MR images after intravenous injection in Tg-APPSwe mice. RESULTS: We found that mice with high plaque-burden could be identified using the LCO-Gd constructs by conventional MRI. CONCLUSION: Our study shows that MR imaging of amyloid plaques is challenging but feasible, and hence contrast-mediated MR imaging could be a valuable tool for early AD detection.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Placa Amiloide/patologia , Gadolínio/metabolismo , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Imageamento por Ressonância Magnética/métodos , Modelos Animais de Doenças , Encéfalo/patologia
5.
Nanomedicine ; 48: 102656, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646195

RESUMO

Colorectal and ovarian cancers frequently develop peritoneal metastases with few treatment options. Intraperitoneal chemotherapy has shown promising therapeutic effects, but is limited by rapid drug clearance and systemic toxicity. We therefore encapsulated the cabazitaxel taxane in poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs), designed to improve intraperitoneal delivery. Toxicity of free and encapsulated cabazitaxel was investigated in rats by monitoring clinical signs, organ weight and blood hematological and biochemical parameters. Pharmacokinetics, biodistribution and treatment response were evaluated in mice. Biodistribution was investigated by measuring both cabazitaxel and the 2-ethylbutanol NP degradation product. Drug encapsulation was shown to increase intraperitoneal drug retention, leading to prolonged intraperitoneal drug residence time and higher drug concentrations in peritoneal tumors. As a result, encapsulation of cabazitaxel improved the treatment response in two in vivo models bearing intraperitoneal tumors. Together, these observations indicate a strong therapeutic potential of NP-based cabazitaxel encapsulation as a novel treatment for peritoneal metastases.


Assuntos
Nanopartículas , Neoplasias Peritoneais , Ratos , Camundongos , Animais , Neoplasias Peritoneais/tratamento farmacológico , Distribuição Tecidual , Taxoides/farmacologia , Taxoides/uso terapêutico
6.
Int J Pharm X ; 4: 100124, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35898812

RESUMO

Poly (alkyl cyanoacrylate) (PACA) polymeric nanoparticles (NPs) are promising drug carriers in drug delivery. However, the selection of commercially available alkyl cyanoacrylate (ACA) monomers is limited, because most monomers were designed for use in medical and industrial glues and later repurposed for drug encapsulation. This study therefore aimed to seek out novel ACA materials for use in NP systems using a toxicity led screening approach. A multistep strategy, including cytotoxicity screening of alcohols as degradation products of PACA (44 alcohols), NPs (14 polymers), and a final in vivo study (2 polymers) gave poly (2-ethylhexyl cyanoacrylate) PEHCA as a promising novel PACA candidate. For the first time, this work presents cytotoxicity data on several novel ACAs, PEHCA in vivo toxicity data, and miniemulsion polymerisation-based encapsulation of the cabazitaxel and NR688 in novel PACA candidates. Furthermore, several of the ACA candidates were compatible with a wider selection of lipophilic active pharmaceutical ingredients (APIs) versus commercially available controls. Combined, this work demonstrates the potential benefits of expanding the array of available ACA materials in drug delivery. Novel ACAs have the potential to encapsulate a wider range of APIs in miniemulsion polymerisation processes and may also broaden PACA applicability in other fields.

7.
Drug Deliv Transl Res ; 12(9): 2114-2131, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35426570

RESUMO

Biodistribution of nanoencapsulated bioactive compounds is primarily determined by the size, shape, chemical composition and surface properties of the encapsulating nanoparticle, and, thus, less dependent on the physicochemical properties of the active pharmaceutical ingredient encapsulated. In the current work, we aimed to investigate the impact of formulation type on biodistribution profile for two clinically relevant nanoformulations. We performed a comparative study of biodistribution in healthy rats at several dose levels and durations up to 14-day post-injection. The studied nanoformulations were nanostructured lipid carriers incorporating the fluorescent dye IR780-oleyl, and polymeric nanoparticles containing the anticancer agent cabazitaxel. The biodistribution was approximated by quantification of the cargo in blood and relevant organs. Several clear and systematic differences in biodistribution were observed, with the most pronounced being a much higher (more than 50-fold) measured concentration ratio between cabazitaxel in all organs vs. blood, as compared to IR780-oleyl. Normalized dose linearity largely showed opposite trends between the two compounds after injection. Cabazitaxel showed a higher brain accumulation than IR780-oleyl with increasing dose injected. Interestingly, cabazitaxel showed a notable and prolonged accumulation in lung tissue compared to other organs. The latter observations could warrant further studies towards a possible therapeutic indication within lung and conceivably brain cancer for nanoformulations of this highly antineoplastic compound, for which off-target toxicity is currently dose-limiting in the clinic.


Assuntos
Antineoplásicos , Nanopartículas , Nanoestruturas , Animais , Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Polímeros , Ratos , Distribuição Tecidual
8.
Nanomaterials (Basel) ; 11(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924869

RESUMO

We have investigated the biodistribution and tumor macrophage infiltration after intravenous injection of the poly(alkyl cyanoacrylate) nanoparticles (NPs): PEBCA (poly(2-ethyl-butyl cyanoacrylate), PBCA (poly(n-butyl cyanoacrylate), and POCA (poly(octyl cyanoacrylate), in mice. These NPs are structurally similar, have similar PEGylation, and have previously been shown to give large variations in cellular responses in vitro. The PEBCA NPs had the highest uptake both in the patient-derived breast cancer xenograft MAS98.12 and in lymph nodes, and therefore, they are the most promising of these NPs for delivery of cancer drugs. High-resolution magic angle spinning magnetic resonance (HR MAS MR) spectroscopy did not reveal any differences in the metabolic profiles of tumors following injection of the NPs, but the PEBCA NPs resulted in higher tumor infiltration of the anti-tumorigenic M1 macrophages than obtained with the two other NPs. The PEBCA NPs also increased the ratio of M1/M2 (anti-tumorigenic/pro-tumorigenic) macrophages in the tumors, suggesting that these NPs might be used both as a vehicle for drug delivery and to modulate the immune response in favor of enhanced therapeutic effects.

9.
J Control Release ; 326: 164-171, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32681950

RESUMO

The situation of the COVID-19 pandemic reminds us that we permanently need high-value flexible solutions to urgent clinical needs including simplified diagnostic technologies suitable for use in the field and for delivering targeted therapeutics. From our perspective nanotechnology is revealed as a vital resource for this, as a generic platform of technical solutions to tackle complex medical challenges. It is towards this perspective and focusing on nanomedicine that we take issue with Prof Park's recent editorial published in the Journal of Controlled Release. Prof. Park argued that in the last 15 years nanomedicine failed to deliver the promised innovative clinical solutions to the patients (Park, K. The beginning of the end of the nanomedicine hype. Journal of Controlled Release, 2019; 305, 221-222 [1]. We, the ETPN (European Technology Platform on Nanomedicine) [2], respectfully disagree. In fact, the more than 50 formulations currently in the market, and the recent approval of 3 key nanomedicine products (e. g. Onpattro, Hensify and Vyxeos), have demonstrated that the nanomedicine field is concretely able to design products that overcome critical barriers in conventional medicine in a unique manner, but also to deliver within the cells new drug-free therapeutic effects by using pure physical modes of action, and therefore make a difference in patients lives. Furthermore, the >400 nanomedicine formulations currently in clinical trials are expecting to bring novel clinical solutions (e.g. platforms for nucleic acid delivery), alone or in combination with other key enabling technologies to the market, including biotechnologies, microfluidics, advanced materials, biomaterials, smart systems, photonics, robotics, textiles, Big Data and ICT (information & communication technologies) more generally. However, we agree with Prof. Park that " it is time to examine the sources of difficulty in clinical translation of nanomedicine and move forward ". But for reaching this goal, the investments to support clinical translation of promising nanomedicine formulations should increase, not decrease. As recently encouraged by EMA in its roadmap to 2025, we should create more unity through a common knowledge hub linking academia, industry, healthcare providers and hopefully policy makers to reduce the current fragmentation of the standardization and regulatory body landscape. We should also promote a strategy of cross-technology innovation, support nanomedicine development as a high value and low-cost solution to answer unmet medical needs and help the most promising innovative projects of the field to get better and faster to the clinic. This global vision is the one that the ETPN chose to encourage for the last fifteen years. All actions should be taken with a clear clinical view in mind, " without any fanfare", to focus "on what matters in real life", which is the patient and his/her quality of life. This ETPN overview of achievements in nanomedicine serves to reinforce our drive towards further expanding and growing the maturity of nanomedicine for global healthcare, accelerating the pace of transformation of its great potential into tangible medical breakthroughs.


Assuntos
Sistemas de Liberação de Medicamentos , Nanomedicina , Animais , COVID-19 , Ensaios Clínicos como Assunto , Infecções por Coronavirus/terapia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanomedicina/métodos , Nanotecnologia/métodos , Neoplasias/terapia , Pandemias , Pneumonia Viral/terapia
10.
Mol Imaging Biol ; 22(3): 486-493, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31650483

RESUMO

PURPOSE: The endeavor of deciphering intricate phenomena within the field of molecular medicine dictates the necessity to investigate tumor/disease microenvironment real-time on cellular level. We, hereby, design simple and robust intravital microscopy strategies, which can be used to elucidate cellular or molecular interactions in a fluorescent mouse model. PROCEDURES: We crossbred transgenic TIE2GFP mice with nude BALB/c mice, allowing the breeding of immunocompetent and immunodeficient mouse models expressing green fluorescent protein (GFP) in vascular endothelium. Then, we surgically exposed various tissues of interest to perform intravital microscopy. RESULTS: By utilizing simple tissue preparation procedures and confocal or two-photon microscopy, we produced high-resolution static snapshots, dynamic sequences, and 3D reconstructions of orthotopically grown mammary tumor, skin inflammation, brain, and muscle. The homogenous detection of GFP expressed by endothelial cells and a combination of fluorescence agents enabled landmarking of tumor microenvironment and precise molecular tagging. CONCLUSION: Simple intravital microscopy procedures on TIE2GFP mice allowed a real-time multi-color visualization of tissue microenvironment, underlining that robust microscopy strategies are relatively simple and can be readily available for many tissues of interest.


Assuntos
Neoplasias da Mama/patologia , Microscopia Intravital/métodos , Microscopia Confocal/métodos , Receptor TIE-2/genética , Animais , Neoplasias da Mama/diagnóstico por imagem , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Receptor TIE-2/química , Receptor TIE-2/metabolismo , Microambiente Tumoral
11.
Ultrasound Med Biol ; 45(11): 3028-3041, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31474384

RESUMO

Ultrasound and microbubbles have been found to improve the delivery of drugs and nanoparticles to tumor tissue. To obtain new knowledge on the influence of vascular parameters on extravasation and to elucidate the effect of acoustic pressure on extravasation and penetration of nanoscale particles into the extracellular matrix, real-time intravital multiphoton microscopy was performed during sonication of tumors growing in dorsal window chambers. The impact of vessel diameter, vessel structure and blood flow was characterized. Fluorescein isothiocyanate-dextran (2 MDa) was injected to visualize blood vessels. Mechanical indexes (MI) of 0.2-0.8 and in-house-made, nanoparticle-stabilized microbubbles or Sonovue were applied. The rate and extent of penetration into the extracellular matrix increased with increasing MI. However, to achieve extravasation, smaller vessels required MIs (0.8) higher than those of blood vessels with larger diameters. Ultrasound changed the blood flow rate and direction. Interestingly, the majority of extravasations occurred at vessel branching points.


Assuntos
Extravasamento de Materiais Terapêuticos e Diagnósticos , Nanopartículas/química , Osteossarcoma/irrigação sanguínea , Osteossarcoma/diagnóstico por imagem , Sonicação , Ultrassonografia/métodos , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Dextranos , Modelos Animais de Doenças , Fluoresceína-5-Isotiocianato/análogos & derivados , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microbolhas , Fosfolipídeos/química , Hexafluoreto de Enxofre/química
12.
Nanotheranostics ; 3(1): 103-112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30899638

RESUMO

Treatment of glioblastoma and other diseases in the brain is especially challenging due to the blood-brain barrier, which effectively protects the brain parenchyma. In this study we show for the first time that cabazitaxel, a semi-synthetic derivative of docetaxel can cross the blood-brain barrier and give a significant therapeutic effect in a patient-derived orthotopic model of glioblastoma. We show that the drug crosses the blood-brain barrier more effectively in the tumor than in the healthy brain due to reduced expression of p-glycoprotein efflux pumps in the vasculature of the tumor. Surprisingly, neither ultrasound-mediated blood-brain barrier opening (sonopermeation) nor drug formulation in polymeric nanoparticles could increase either accumulation of the drug in the brain or therapeutic effect. This indicates that for hydrophobic drugs, sonopermeation of the blood brain barrier might not be sufficient to achieve improved drug delivery. Nonetheless, our study shows that cabazitaxel is a promising drug for the treatment of brain tumors.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Docetaxel , Glioblastoma , Neoplasias Experimentais , Taxoides , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Docetaxel/farmacocinética , Docetaxel/farmacologia , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Taxoides/farmacocinética , Taxoides/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
PLoS One ; 13(1): e0191102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29338016

RESUMO

The treatment of brain diseases is hindered by the blood-brain barrier (BBB) preventing most drugs from entering the brain. Focused ultrasound (FUS) with microbubbles can open the BBB safely and reversibly. Systemic drug injection might induce toxicity, but encapsulation into nanoparticles reduces accumulation in normal tissue. Here we used a novel platform based on poly(2-ethyl-butyl cyanoacrylate) nanoparticle-stabilized microbubbles to permeabilize the BBB in a melanoma brain metastasis model. With a dual-frequency ultrasound transducer generating FUS at 1.1 MHz and 7.8 MHz, we opened the BBB using nanoparticle-microbubbles and low-frequency FUS, and applied high-frequency FUS to generate acoustic radiation force and push nanoparticles through the extracellular matrix. Using confocal microscopy and image analysis, we quantified nanoparticle extravasation and distribution in the brain parenchyma. We also evaluated haemorrhage, as well as the expression of P-glycoprotein, a key BBB component. FUS and microbubbles distributed nanoparticles in the brain parenchyma, and the distribution depended on the extent of BBB opening. The results from acoustic radiation force were not conclusive, but in a few animals some effect could be detected. P-glycoprotein was not significantly altered immediately after sonication. In summary, FUS with our nanoparticle-stabilized microbubbles can achieve accumulation and displacement of nanoparticles in the brain parenchyma.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Nanopartículas , Metástase Neoplásica , Polímeros/administração & dosagem , Ultrassom , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Polímeros/farmacocinética
14.
ACS Appl Bio Mater ; 1(2): 462-472, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35016367

RESUMO

Real time in vivo detection of Amyloid ß (Aß) deposits at an early stage may lead to faster and more conclusive diagnosis of Alzheimer's disease (AD) and can facilitate the follow up of the effect of therapeutic interventions. In this work, the capability of new hybrid nanomaterials to target and detect Aß aggregates using magnetic resonance (MRI) and fluorescence imaging is demonstrated. These smart contrast agents contain paramagnetic nanoparticles surrounded by luminescent conjugated oligothiophenes (LCOs) known to selectively bind to Aß aggregates, with emission spectra strongly dependent on their conformations, opening the possibilities for several fluorescence imaging modes for AD diagnostics. Relaxivity is evaluated in vitro and ex vivo. The capability of these contrast media to link to Aß fibrils in stained sections is revealed using transmission electron microscopy and fluorescence microscopy. Preliminary in vivo experiments show the ability of the contrast agent to diffuse through the blood-brain barrier of model animals and specifically stain amyloid deposits.

15.
Mol Pharm ; 14(8): 2560-2569, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28170271

RESUMO

Protein adsorption on nanoparticles (NPs) used in nanomedicine leads to opsonization and activation of the complement system in blood, which substantially reduces the blood circulation time of NPs. The most commonly used method to avoid protein adsorption is to coat the NPs with polyethylene glycol, so-called PEGylation. Although PEGylation is of utmost importance for designing the in vivo behavior of the NP, there is still a considerable lack of methods for characterization and fundamental understanding related to the PEGylation of NPs. In this work we have studied four different poly(butyl cyanoacrylate) (PBCA) NPs, PEGylated with different types of PEG-based nonionic surfactants-Jeffamine M-2070, Brij L23, Kolliphor HS 15, Pluronic F68-or combinations thereof. We evaluated the PEGylation, both quantitatively by nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) and qualitatively by studying ζ-potential, protein adsorption, diffusion, cellular interactions, and blood circulation half-life. We found that NMR and ToF-SIMS are complementary methods, while TGA is less suitable to quantitate PEG on polymeric NPs. It was found that longer PEG increases both blood circulation time and diffusion of NPs in collagen gels.


Assuntos
Nanopartículas/química , Polímeros/química , Embucrilato/química , Espectroscopia de Ressonância Magnética , Metacrilatos/química , Nanomedicina/métodos , Tensoativos/química , Termogravimetria
16.
Theranostics ; 7(1): 23-30, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28042313

RESUMO

The blood-brain barrier (BBB) is a major obstacle in drug delivery for diseases of the brain, and today there is no standardized route to surpass it. One technique to locally and transiently disrupt the BBB, is focused ultrasound in combination with gas-filled microbubbles. However, the microbubbles used are typically developed for ultrasound imaging, not BBB disruption. Here we describe efficient opening of the BBB using the promising novel Acoustic Cluster Therapy (ACT), that recently has been used in combination with Abraxane® to successfully treat subcutaneous tumors of human prostate adenocarcinoma in mice. ACT is based on the conjugation of microbubbles to liquid oil microdroplets through electrostatic interactions. Upon activation in an ultrasound field, the microdroplet phase transfers to form a larger bubble that transiently lodges in the microvasculature. Further insonation induces volume oscillations of the activated bubble, which in turn induce biomechanical effects that increase the permeability of the BBB. ACT was able to safely and temporarily permeabilize the BBB, using an acoustic power 5-10 times lower than applied for conventional microbubbles, and successfully deliver small and large molecules into the brain.


Assuntos
Barreira Hematoencefálica/fisiologia , Barreira Hematoencefálica/efeitos da radiação , Sistemas de Liberação de Medicamentos/métodos , Permeabilidade/efeitos da radiação , Sonicação/métodos , Ondas Ultrassônicas , Animais , Camundongos , Microbolhas , Óleos
17.
Colloids Surf B Biointerfaces ; 150: 373-383, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27842930

RESUMO

The interaction of the promising drug carriers poly(alkyl cyanoacrylate) nanoparticles (PACA NPs) with lipid monolayers modeling the cell membrane and with RBE4 immortalized rat brain endothelial cells was compared to assess the relevance of lipid monolayer-based cell membrane models for PACA NP cellular uptake. NP properties such as size and charge of NPs and density of poly(ethylene glycol) coating (PEG) were kept in a narrow range to assess whether the type of PEG coating and the PACA monomer affected NP-monolayer and NP-cell interactions. The interaction with lipid monolayers was evaluated using surface pressure measurements and Brewster angle microscopy. NP association with and uptake by cells were assessed using flow cytometry and confocal laser scanning microscopy. The interaction between NPs and both lipid monolayers and the plasma membrane depended on the type of PEG. PEG density affected cellular uptake but not interaction with lipid monolayers. NP monomer, NPs size and charge had no effect on the interaction. This might be due to the fact that the size and charge distribution was kept rather narrow to study the effect of PACA monomer and PEG type. In conclusion, while modeling solely the passive aspect of NP-cell interactions, lipid monolayers nevertheless proved a valuable cell membrane model whose interaction with PACA NPs correlated well with NP-cell interaction. In addition, both NP-monolayer and NP-cell interactions were dependent on PEGylation type, which could be used in the design of NPs to either facilitate or hinder cellular uptake, depending on the intended purpose.


Assuntos
Cianoacrilatos/química , Lipídeos/química , Nanopartículas/química , Polietilenoglicóis/química , Animais , Encéfalo/metabolismo , Membrana Celular/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Células Endoteliais/metabolismo , Citometria de Fluxo , Microscopia Confocal , Tamanho da Partícula , Fosfolipídeos/química , Polímeros/farmacologia , Ratos , Propriedades de Superfície
18.
Cytometry A ; 91(8): 760-766, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27077940

RESUMO

In vitro and in vivo behavior of nanoparticles (NPs) is often studied by tracing the NPs with fluorescent dyes. This requires stable incorporation of dyes within the NPs, as dye leakage may give a wrong interpretation of NP biodistribution, cellular uptake, and intracellular distribution. Furthermore, NP labeling with trace amounts of dye should not alter NP properties such as interactions with cells or tissues. To allow for versatile NP studies with a variety of fluorescence-based assays, labeling of NPs with different dyes is desirable. Hence, when new dyes are introduced, simple and fast screening methods to assess labeling stability and NP-cell interactions are needed. For this purpose, we have used a previously described generic flow cytometry assay; incubation of cells with NPs at 4 and 37°C. Cell-NP interaction is confirmed by cellular fluorescence after 37°C incubation, and NP-dye retention is confirmed when no cellular fluorescence is detected at 4°C. Three different NP-platforms labeled with six different dyes were screened, and a great variability in dye retention was observed. Surprisingly, incorporation of trace amounts of certain dyes was found to reduce or even inhibit NP uptake. This work highlights the importance of thoroughly evaluating every dye-NP combination before pursuing NP-based applications. © 2016 International Society for Advancement of Cytometry.


Assuntos
Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Citometria de Fluxo/métodos , Fluorescência , Humanos , Ratos , Coloração e Rotulagem/métodos , Distribuição Tecidual/fisiologia
19.
J Nanobiotechnology ; 14: 1, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26743777

RESUMO

BACKGROUND: Poly(alkyl cyanoacrylate) (PACA) nanoparticles have shown promise as drug carriers both to solid tumors and across the blood-brain barrier. Efficient drug delivery requires both high cellular uptake of the nanoparticles and release of the drug from the nanoparticles. Release of hydrophobic drugs from PACA nanoparticles is primarily governed by nanoparticle degradation, and this process has been poorly studied at the cellular level. Here we use the hydrophobic model drug Nile Red 668 (NR668) to investigate intracellular degradation of PACA nanoparticles by measuring changes in NR668 fluorescence emission and lifetime, as the spectral properties of NR668 depend on the hydrophobicity of the dye environment. We also assess the potential of poly(butyl cyanoacrylate) (PBCA) and poly(octyl cyanoacrylate) (POCA) nanoparticles for intracellular drug delivery in the prostate cancer cell line PC3 and rat brain endothelial cell line RBE4 and the role of endocytosis pathways in PACA nanoparticle uptake in those cell lines. RESULTS: Fluorescence lifetime imaging, emission spectra analysis and Förster resonance energy transfer indicated that the intracellular degradation was in line with the degradation found by direct methods such as gas chromatography and scanning electron microscopy, showing that PBCA has a faster degradation rate compared to POCA. The combined P(BCA/OCA) nanoparticles had an intermediate degradation rate. The uptake of POCA and PBCA nanoparticles was much higher in RBE4 than in PC3 cells. Endocytosis inhibition studies showed that both clathrin- and caveolin-mediated endocytosis were involved in PACA nanoparticle uptake, and that the former played a predominant role, particularly in PC3 cells. CONCLUSIONS: In the present study, we used three different optical techniques to show that within a 24-hour period PBCA nanoparticles degraded significantly inside cells, releasing their payload into the cytosol, while POCA nanoparticles remained intact. This indicates that it is possible to tune the intracellular drug release rate by choosing appropriate monomers from the PACA family or by using hybrid PACA nanoparticles containing different monomers. In addition, we showed that the uptake of PACA nanoparticles depends not only on the monomer material, but also on the cell type, and that different cell lines can use different internalization pathways.


Assuntos
Cianoacrilatos/metabolismo , Nanopartículas/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/fisiologia , Endocitose/fisiologia , Fluorescência , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Neoplasias da Próstata/metabolismo , Ratos
20.
J Control Release ; 220(Pt A): 287-294, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26518721

RESUMO

The blood-brain barrier (BBB) constitutes a significant obstacle for the delivery of drugs into the central nervous system (CNS). Nanoparticles have been able to partly overcome this obstacle and can thus improve drug delivery across the BBB. Furthermore, focused ultrasound in combination with gas filled microbubbles has opened the BBB in a temporospatial manner in animal models, thus facilitating drug delivery across the BBB. In the current study we combine these two approaches in our quest to develop a novel, generic method for drug delivery across the BBB and into the CNS. Nanoparticles were synthesized using the polymer poly(butyl cyanoacrylate) (PBCA), and such nanoparticles have been reported to cross the BBB to some extent. Together with proteins, these nanoparticles self-assemble into microbubbles. Using these novel microbubbles in combination with focused ultrasound, we successfully and safely opened the BBB transiently in healthy rats. Furthermore, we also demonstrated that the nanoparticles could cross the BBB and deliver a model drug into the CNS.


Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Portadores de Fármacos , Embucrilato/química , Corantes Fluorescentes/metabolismo , Microbolhas , Nanopartículas , Oxazinas/metabolismo , Ultrassom/métodos , Animais , Composição de Medicamentos , Feminino , Corantes Fluorescentes/química , Imageamento por Ressonância Magnética , Nanotecnologia , Oxazinas/química , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...