Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(18): 4307-4334, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38595268

RESUMO

Graphene quantum dots (GQDs) hold great promise for photodynamic and photothermal cancer therapies. Their unique properties, such as exceptional photoluminescence, photothermal conversion efficiency, and surface functionalization capabilities, make them attractive candidates for targeted cancer treatment. GQDs have a high photothermal conversion efficiency, meaning they can efficiently convert light energy into heat, leading to localized hyperthermia in tumors. By targeting the tumor site with laser irradiation, GQD-based nanosystems can induce selective cancer cell destruction while sparing healthy tissues. In photodynamic therapy, light-sensitive compounds known as photosensitizers are activated by light of specific wavelengths, generating reactive oxygen species that induce cancer cell death. GQD-based nanosystems can act as excellent photosensitizers due to their ability to absorb light across a broad spectrum; their nanoscale size allows for deeper tissue penetration, enhancing the therapeutic effect. The combination of photothermal and photodynamic therapies using GQDs holds immense potential in cancer treatment. By integrating GQDs into this combination therapy approach, researchers aim to achieve enhanced therapeutic efficacy through synergistic effects. However, biodistribution and biodegradation of GQDs within the body present a significant hurdle to overcome, as ensuring their effective delivery to the tumor site and stability during treatment is crucial for therapeutic efficacy. In addition, achieving precise targeting specificity of GQDs to cancer cells is a challenging task that requires further exploration. Moreover, improving the photothermal conversion efficiency of GQDs, controlling reactive oxygen species generation for photodynamic therapy, and evaluating their long-term biocompatibility are all areas that demand attention. Scalability and cost-effectiveness of GQD synthesis methods, as well as obtaining regulatory approval for clinical applications, are also hurdles that need to be addressed. Further exploration of GQDs in photothermal and photodynamic cancer therapies holds promise for advancements in targeted drug delivery, personalized medicine approaches, and the development of innovative combination therapies. The purpose of this review is to critically examine the current trends and advancements in the application of GQDs in photothermal and photodynamic cancer therapies, highlighting their potential benefits, advantages, and future perspectives as well as addressing the crucial challenges that need to be overcome for their practical application in targeted cancer therapy.


Assuntos
Grafite , Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Terapia Fototérmica , Pontos Quânticos , Grafite/química , Pontos Quânticos/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia
2.
Comput Theor Chem ; 1199: 113215, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33747754

RESUMO

Today, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has recently caused a severe outbreak worldwide. There are still several challenges in COVID-19 diagnoses, such as limited reagents, equipment, and long turnaround times. In this research, we propose to design molecularly imprinted polymers as a novel approach for the rapid and accurate detection of SARS-CoV-2. For this purpose, we investigated molecular interactions between the target spike protein, receptor-binding domain of the virus, and the common functional monomers used in molecular imprinting by a plethora of computational analyses; sequence analysis, molecular docking, and molecular dynamics (MD) simulations. Our results demonstrated that AMPS and IA monomers gave promising results on the SARS-CoV-2 specific TEIYQAGST sequence for further analysis. Therefore, we propose an epitope approach-based synthesis route for specific recognition of SARS-CoV-2 by using AMPS and IA as functional monomers and the peptide fragment of the TEIYQAGST sequence as a template molecule.

3.
Int J Biol Macromol ; 119: 982-991, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30092306

RESUMO

In this study, poly(3-hydroxybutyrate) (PHB) production from a newly isolated obligate alkaliphilic Bacillus marmarensis DSM 21297 was investigated to evaluate the ability of obligate alkaliphilic strain to produce a biopolymer. Additionally, electrospun nanofibers from B. marmarensis PHB (Bm-PHB) were generated using Bm-PHB/polycaprolactone (PCL) blend to evaluate the applicability of Bm-PHB. According to the experimental results, the metabolic activity of B. marmarensis decreased the pH of the medium by generating H+ ions to initiate Bm-PHB production, which was achieved at pH below 9.0. Regarding medium components, the addition of MgSO4.7H2O and KH2PO4 to the medium containing 1% glucose enhanced the amount of Bm-PHB synthesis, and an approximately 60% increase in PHB concentration was obtained in the presence of mineral salts. Based on FTIR analysis, the chemical structures of Bm-PHB and commercial PHB were found to be highly similar. Additionally, the Tg and Tm values of Bm-PHB were determined to be 17.77 °C and 165.17 °C, respectively. Moreover, Bm-PHB/PCL composite scaffold was generated by electrospinning method that produced nanofibers between 150 and 400 nm in diameter, with an average of 250 nm. To our knowledge, this is the first report to produce PHB from an obligate alkaliphilic Bacillus strain and PHB scaffold.


Assuntos
Bacillus/metabolismo , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Carbono/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Hidroxibutiratos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas , Nanofibras/química , Nanofibras/ultraestrutura , Poliésteres/isolamento & purificação , Cloreto de Sódio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...