Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37835676

RESUMO

The objective of our study was to evaluate the predictive ability of a multi-trait genomic prediction model that accounts for interactions between marker effects to estimate heritability and genetic correlations of traits including 305-day milk yield, milk fat percentage, milk protein percentage, milk lactose percentage, and milk dry matter percentage in the Polish Holstein Friesian cow population. For this aim, 14,742 SNP genotype records for 586 Polish Holstein Friesian dairy cows from Poland were used. Single-Trait-ssGBLUP (ST) and Multi-Trait-ssGBLUP (MT) methods were used for estimation. We examined 305-day milk yield (MY, kg), milk fat percentage (MF, %), milk protein percentage (MP, %), milk lactose percentage (ML, %), and milk dry matter percentage (MDM, %). The results showed that the highest marker effect rank correlation was found between milk fat percentage and milk dry matter. The weakest marker effect rank correlation was found between ML and all other traits. Obtained accuracies of this study were between 0.770 and 0.882, and 0.773 and 0.876 for MT and ST, respectively, which were acceptable values. All estimated bias values were positive, which is proof of underestimation. The highest heritability value was obtained for MP (0.3029) and the lowest heritability value was calculated for ML (0.2171). Estimated heritability values were low for milk yield and milk composition as expected. The strongest genetic correlation was estimated between MDM and MF (0.4990) and the weakest genetic correlation was estimated between MY and ML (0.001). The genetic relations with milk yield were negative and can be ignored as they were not significant. In conclusion, multi-trait genomic prediction can be more beneficial than single-trait genomic prediction.

2.
Vet Sci ; 10(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669033

RESUMO

Deep learning algorithms can now be used to identify, locate, and count items in an image thanks to advancements in image processing technology. The successful application of image processing technology in different fields has attracted much attention in the field of agriculture in recent years. This research was done to ascertain the number of indigestible cereal grains in animal feces using an image processing method. In this study, a regression-based way of object counting was used to predict the number of cereal grains in the feces. For this purpose, we have developed two different neural network architectures based upon Fully Convolutional Regression Networks (FCRN) and U-Net. The images used in the study were obtained from three different dairy cows enterprises operating in Nigde Province. The dataset consists of the 277 distinct dropping images of dairy cows in the farm. According to findings of the study, both models yielded quite acceptable prediction accuracy with U-Net providing slightly better prediction with a MAE value of 16.69 in the best case, compared to 23.65 MAE value of FCRN with the same batch.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...