Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 8(8): 5694-705, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26814561

RESUMO

In this work, we report on the development of a highly functionalizable polymer coating prepared by the chemical coupling of trichlorosilane (TCS) to the vinyl groups of poly(vinylmethyl siloxane) (PVMS). The resultant PVMS-TCS copolymer can be coated as a functional organic primer layer on a variety of polymeric substrates, ranging from hydrophilic to hydrophobic. Several case studies demonstrating the remarkable and versatile properties of PVMS-TCS coatings are presented. In particular, PVMS-TCS is found to serve as a convenient precursor for the deposition of organosilanes and the subsequent growth of polymer brushes, even on hydrophobic surfaces, such as poly(ethylene terephthalate) and polypropylene. In this study, the physical and chemical characteristics of these versatile PVMS-TCS coatings are interrogated by an arsenal of experimental probes, including scanning electron microscopy, water contact-angle measurements, ellipsometry, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure spectroscopy.

2.
ACS Appl Mater Interfaces ; 6(24): 22544-52, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25426681

RESUMO

The development of a versatile silicone copolymer coating prepared by the chemical coupling of trichlorosilane (TCS) to the vinyl groups of poly(vinylmethylsiloxane) (PVMS) is reported. The resultant PVMS-TCS copolymer can be deposited as a functional organic layer on a hydrophobic poly(dimethylsiloxane) substrate and its mechanical modulus can be regulated by varying the TCS coupling ratio. In this paper, several case studies demonstrating the versatile properties of these PVMS-TCS functional coatings on PDMS elastomer substrates are presented. Numerous experimental probes, including optical microscopy, Fourier-transform infrared spectroscopy, surface contact angle, ellipsometry, and nanoindentation, are utilized to interrogate the physical and chemical characteristics of these PVMS-TCS coatings.

3.
Biomacromolecules ; 13(5): 1269-78, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22486230

RESUMO

We examine the protein distribution within an electrospun polymer nanofiber using polyvinyl alcohol and bovine serum albumin as a model system. We hypothesize that the location of the protein within the nanofiber can be controlled by carefully selecting the pH and the applied polarity of the electric field as the pH affects the net charge on the proteins. Using fluorescently labeled BSA and surface analysis, we observe that the distribution of BSA is affected by the pH of the electrospinning solution. Therefore, we further probe the relevant forces on the protein in solution during electrospinning. The role of hydrodynamic friction was assessed using glutaraldehyde and HCl as a tool to modify the viscosity of the solution during electrospinning. By varying the pH and the polarity of the applied electric field, we evaluated the effects of electrostatic forces and dielectrophoresis on the protein during fiber formation. We surmise that electrostatic forces and hydrodynamic friction are insignificant relative to dielectrophoretic forces; therefore, it is possible to separate species in a blend using polarizability contrast. A coaxial distribution of protein in the core can be obtained by electrospinning at the isoelectric point of the protein, whereas surface enrichment can be obtained when the protein carries a net charge.


Assuntos
Nanofibras/química , Álcool de Polivinil/química , Soroalbumina Bovina/química , Animais , Bovinos , Eletroquímica , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Propriedades de Superfície
4.
Biomacromolecules ; 13(5): 1371-82, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22414148

RESUMO

Hydrophilic coatings were produced on flat hydrophobic substrates featuring n-octadecyltrichlorosilane (ODTS) and synthetic polypropylene (PP) nonwoven surfaces through the adsorption of denatured proteins. Specifically, physisorption from aqueous solutions of α-lactalbumin, lysozyme, fibrinogen, and two soy globulin proteins (glycinin and ß-conglycinin) after chemical (urea) and thermal denaturation endowed the hydrophobic surfaces with amino and hydroxyl functionalities, yielding enhanced wettability. Proteins adsorbed strongly onto ODTS and PP through nonspecific interactions. The thickness of adsorbed heat-denatured proteins was adjusted by varying the pH, protein concentration in solution, and adsorption time. In addition, the stability of the immobilized protein layer was improved significantly after interfacial cross-linking with glutaraldehyde in the presence of sodium borohydride. The amino and hydroxyl groups present on the protein-modified surfaces served as reactive sites for the attachment of polymerization initiators from which polymer brushes were grown by surface-initiated atom-transfer radical polymerization of 2-hydroxyethyl methacrylate. Protein denaturation and adsorption as well as the grafting of polymeric brushes were characterized by circular dichroism, ellipsometry, contact angle, and Fourier transform infrared spectroscopy in the attenuated total reflection mode.


Assuntos
Antígenos de Plantas/química , Globulinas/química , Proteínas de Armazenamento de Sementes/química , Proteínas de Soja/química , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Polimerização , Polipropilenos/química , Desnaturação Proteica/efeitos dos fármacos , Estabilidade Proteica , Silanos/química , Propriedades de Superfície , Temperatura , Ureia/farmacologia
5.
ACS Appl Mater Interfaces ; 4(1): 59-64, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22233710

RESUMO

Poly(ethylene terephthalate) (PET) is one of the most important thermoplastics in ubiquitous use today because of its mechanical properties, clarity, solvent resistance, and recyclability. In this work, we functionalize the surface of electrospun PET microfibers by growing poly(N-isopropylacrylamide) (PNIPAAm) brushes through a chemical sequence that avoids PET degradation to generate thermoresponsive microfibers that remain mechanically robust. Amidation of deposited 3-aminopropyltriethoxysilane, followed by hydrolysis, yields silanol groups that permit surface attachment of initiator molecules, which can be used to grow PNIPAAm via "grafting from" atom-transfer radical polymerization. Spectroscopic analyses performed after each step confirm the expected reaction and the ultimate growth of PNIPAAm brushes. Water contact-angle measurements conducted at temperatures below and above the lower critical solution temperature of PNIPAAm, coupled with adsorption of Au nanoparticles from aqueous suspension, demonstrate that the brushes retain their reversible thermoresponsive nature, thereby making PNIPAAm-functionalized PET microfibers suitable for filtration media, tissue scaffolds, delivery vehicles, and sensors requiring robust microfibers.


Assuntos
Nanofibras/química , Polietilenoglicóis/química , Polímeros/síntese química , Acrilamidas/química , Resinas Acrílicas , Polietilenotereftalatos , Polimerização , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...