Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(2): 2112-2118, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687068

RESUMO

We report on time-dependent density functional theory calculations of the excited states of 63 different graphene quantum dots (GQDs) in square shape with side lengths of 1, 1.5, and 2 nm. We investigate the systematics and trends in the UV-vis absorption spectra of these GQDs, which are doped with elements B, N, O, S, and P at dopant percentages of 1.5%, 3%, 5%, and 7%. The results show how the peaks in the UV and visible parts of the spectrum as well as the total absorption evolve in the chemical parameter space along the coordinates of size, dopant type, and dopant percentage. The absorption spectra calculated here can be used to obtain particular GQD mixture proportions that would yield a desired absorption profile such as flat absorption across the whole visible spectrum or one that is locally peaked around a chosen wavelength.

2.
Phys Rev E ; 100(2-1): 020702, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574595

RESUMO

Bulk-boundary correspondence is the emergence of features at the boundary of a material that are dependent on and yet distinct from the properties of the bulk of the material. The diverse applications of this idea in topological insulators as well as high energy physics prove its universality. However, whether a form of bulk-boundary correspondence holds also in soft matter such as gels, polymers, lipids, and other biomaterials is thus far unknown. Aerosil-dispersed liquid crystal gels provide a good testing ground to explore the relation between the controlled variations of the aerosil density within the liquid crystal bulk and the surface topography of the sample. Here we report on a direct observation of such a correspondence where the controlled strength of random disorder created by aerosil dispersion in the bulk liquid crystal is correlated with the fractal dimension of the surface. We obtained the surface topography of our gel samples with different quenched random disorder strengths by using atomic force microscope techniques, and computed the fractal dimension for each sample. We found that an increase of the aerosil gel density in the bulk corresponds to an increase in the fractal dimension at the surface. From our results emerges a method to acquire the bulk properties of soft matter such as density, randomness, and phase merely from the fractal dimension of the surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...