Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; : 1-9, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38344829

RESUMO

Freeze drying has been well applied in the preparation of high-efficiency viability probiotic powders. However, the process is generally accompanied by probiotic viability deficiency, which poses a problem for further application. In this study, various kinds of cryoprotectant formulations (skim milk, maltodextrin, and sucrose) were tested to enhance the survival of Lactiplantibacillus plantarum NBC99 after freezing and freeze-drying. An I-optimal experimental design-oriented optimization model was presented to optimize the cryoprotective medium, and the highest cell survival was observed with 25% skim milk, 8.71% maltodextrin, and 1.13% sucrose cryoprotectant as the optimum condition. L. plantarum NBC99 has been a good potential strain for the manufacture of an industrial probiotic, and this research has aimed to investigate the long-term protective effects of optimum cryoprotectant formulations on the viability of bacteria. The results showed the potential value of freeze-dried probiotic L. plantarum NBC99 culture for commercialization.

2.
Prep Biochem Biotechnol ; 54(1): 12-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37083050

RESUMO

There has been an increasing interest in biocatalysts over the past few decades in order to obtain high efficiency, high yield, and environmentally benign procedures aiming at the manufacture of pharmacologically relevant chemicals. Lactic Acid Bacteria (LAB), a microbial group, can be employed as biocatalysts while performing asymmetric reduction of prochiral ketones. In this study, Leuconostoc mesenteroides N6 was used for the asymmetric bioreduction 1-indanone. And then, a novel and innovative face-centered design-based multi-objective optimization model was used to optimize experimental conditions. Also, the experimental design factors were defined as agitation speed, incubation period, pH, and temperature for optimization to acquire the maximum enantiomeric excess (ee) and conversion rate (cr) values. When using the face-centered design-based multi-objective optimization model, the optimum culture conditions corresponded to 96.34 and 99.42%, ee and cr responses, respectively, were pH = 5.87, incubation temperature = 35 °C, incubation period = 50.88 h, and agitation speed = 152.60 rpm. Notably, the validation experiment under the optimum model conditions confirmed the model results. This study demonstrated the importance of the optimization and the efficiency of the face-centered design-based multi-objective model.


Assuntos
Leuconostoc mesenteroides , Cetonas , Lactobacillales/química
3.
Prep Biochem Biotechnol ; 53(10): 1254-1262, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36876855

RESUMO

Prochiral ketones can be effectively bio-reduced to chiral secondary alcohols by whole-cell biocatalysts, which are possible useful precursors to synthesize physiologically active chemicals and natural products. When whole-cell biocatalysts strains are used, bioreduction process can be influenced by various cultural factors, and it is vital to optimize these factors that affect selectivity, conversion rate, and yield. In this study, Weissella cibaria N9 was used as whole-cell biocatalyst for bioreduction of 1-(thiophen-2-yl)ethanone, and cultural design factors were optimized using a desirability function-embedded face-centered optimization model. For this, effects of pH (4.5-5.5-6.5, x1), (2) temperature (25-30-35 °C, x2), (3) incubation period (24-48-72 h, x3), and (4) agitation speed (100-150-200 rpm, x4) on two response variables; (1) ee (%) and (2) cr (%) were tested. Next, desirability function-embedded face-centered optimization model revealed that a pH of 6.43, a temperature of 26.04 °C, an incubation period of 52.41 h, and an agitation speed of 150 rpm were the optimum levels and the estimated ee and cr responses were 99.31% and 98.16%, respectively. Importantly, the actual experimental ee and cr responses were similar to the estimated values indicating the capability of the offered desirability function-embedded face-centered optimization model when using the optimum cultural conditions.


Assuntos
Álcoois , Weissella , Temperatura , Cetonas
4.
Chirality ; 34(5): 796-806, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218076

RESUMO

Aromatic α-halohydrins, especially 2-haloethanols, which are a common pharmacological precursor, may be readily transformed to chiral ß-adrenergic receptor blockers. Studies including the synthesis of (S)-2-bromo-1-(naphthalen-2-yl)ethanol ((S)-2), an α-halohydrin, in high conversion, enantiomeric excess (ee), and yield by biocatalytic asymmetric reduction of 2-bromo-1-(naphthalen-2-yl)ethanone (1) are still insufficient. Moreover, asymmetric reduction of substrate 1 using a mathematical optimization method is not explored in the current literature. In this article, the four asymmetric bioreduction conditions, which are (1) pH, (2) temperature, (3) incubation period, and (4) agitation speed, of substrate 1 were optimized to obtain (S)-2 with A-optimal design-embedded model in the presence of Enterococcus faecium BY48. Optimum bioreduction conditions were determined by the A-optimal design-embedded model as follows: pH = 7, temperature = 25°C, incubation period = 24 h, and agitation speed = 200 rpm. And then, it was suggested that (S)-2 could be obtained with 98.88% ee and 100% conversion rate (cr) under these optimum conditions. As a result of the experimental reaction performed under the optimization conditions suggested by the model, (S)-2 was obtained with 99% ee and 100% cr. The study revealed that E. faecium BY48 could be used as a biocatalyst in asymmetric reduction reactions. Also, the A-optimal design-embedded model could have the great potential to obtain the optimum asymmetric bioreduction conditions.


Assuntos
Enterococcus faecium , Biocatálise , Etanol , Estereoisomerismo , Temperatura
5.
Prep Biochem Biotechnol ; 52(2): 218-225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34028336

RESUMO

The biocatalytic asymmetric reduction of prochiral ketones is a significant transformation in organic chemistry as chiral carbinols are biologically active molecules and may be used as precursors of many drugs. In this study, the bioreduction of 1-(benzo [d] [1,3] dioxol-5-yl) ethanone for the production of enantiomerically pure (S)-1-(1,3-benzodioxal-5-yl) ethanol was investigated using freeze-dried whole-cell of Lactobacillus fermentum P1 and the reduction conditions was optimized with a D-optimal experimental design-based optimization methodology. This is the first study using this optimization methodology in a biocatalytic asymmetric reduction. Using D-optimal experimental design-based optimization, optimum reaction conditions were predicted as pH 6.20, temperature 30 °C, incubation time 30 h, and agitation speed 193 rpm. For these operating conditions, it was estimated that the product could be obtained with 94% enantiomeric excess (ee) and 95% conversion rate (cr). Besides, the actual ee and cr were found to be 99% tested under optimized reaction conditions. These findings demonstrated that L. fermentum P1 as an effective biocatalyst to obtain (S)-1-(1,3-benzodioxal-5-yl) ethanol and with the D-optimal experimental design-based optimization, this product could be obtained with the 99% ee and 99% cr. Finally, the proposed mathematical optimization technique showed the applicability of the obtained results for asymmetric reduction reactions.


Assuntos
Derivados de Benzeno/química , Limosilactobacillus fermentum/metabolismo , Biocatálise , Concentração de Íons de Hidrogênio , Oxirredução , Estereoisomerismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...