Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36987583

RESUMO

Since their discovery over 55 years ago, adeno-associated virus (AAV) vectors have become powerful tools for experimental and therapeutic in vivo gene delivery, particularly in the retina. Increasing knowledge of AAV structure and biology has propelled forward the development of engineered AAV vectors with improved abilities for gene delivery. However, major obstacles to safe and efficient therapeutic gene delivery remain, including tropism, inefficient and untargeted gene delivery, and limited carrying capacity. Additional improvements to AAV vectors will be required to achieve therapeutic benefit while avoiding safety issues. In this review, we provide an overview of recent methods for engineering-enhanced AAV capsids, as well as remaining challenges that must be overcome to achieve optimized therapeutic gene delivery in the eye.

2.
Mol Ther Methods Clin Dev ; 25: 476-489, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35615708

RESUMO

Gene therapy is a rapidly developing field, and adeno-associated viruses (AAVs) are a leading viral-vector candidate for therapeutic gene delivery. Newly engineered AAVs with improved abilities are now entering the clinic. It has proven challenging, however, to predict the translational potential of gene therapies developed in animal models due to cross-species differences. Human retinal explants are the only available model of fully developed human retinal tissue and are thus important for the validation of candidate AAV vectors. In this study, we evaluated 18 wild-type and engineered AAV capsids in human retinal explants using a recently developed single-cell RNA sequencing (RNA-seq) AAV engineering pipeline (scAAVengr). Human retinal explants retained the same major cell types as fresh retina, with similar expression of cell-specific markers except for a photoreceptor population with altered expression of photoreceptor-specific genes. The efficiency and tropism of AAVs in human explants were quantified with single-cell resolution. The top-performing serotypes, K91, K912, and 7m8, were further validated in non-human primate and human retinal explants. Together, this study provides detailed information about the transcriptome profiles of retinal explants and quantifies the infectivity of leading AAV serotypes in human retina, accelerating the translation of retinal gene therapies to the clinic.

3.
Elife ; 102021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34664552

RESUMO

Background: Adeno-associated virus (AAV)-mediated gene therapies are rapidly advancing to the clinic, and AAV engineering has resulted in vectors with increased ability to deliver therapeutic genes. Although the choice of vector is critical, quantitative comparison of AAVs, especially in large animals, remains challenging. Methods: Here, we developed an efficient single-cell AAV engineering pipeline (scAAVengr) to simultaneously quantify and rank efficiency of competing AAV vectors across all cell types in the same animal. Results: To demonstrate proof-of-concept for the scAAVengr workflow, we quantified - with cell-type resolution - the abilities of naturally occurring and newly engineered AAVs to mediate gene expression in primate retina following intravitreal injection. A top performing variant identified using this pipeline, K912, was used to deliver SaCas9 and edit the rhodopsin gene in macaque retina, resulting in editing efficiency similar to infection rates detected by the scAAVengr workflow. scAAVengr was then used to identify top-performing AAV variants in mouse brain, heart, and liver following systemic injection. Conclusions: These results validate scAAVengr as a powerful method for development of AAV vectors. Funding: This work was supported by funding from the Ford Foundation, NEI/NIH, Research to Prevent Blindness, Foundation Fighting Blindness, UPMC Immune Transplant and Therapy Center, and the Van Sloun fund for canine genetic research.


Gene therapy is an experimental approach to treating disease that involves altering faulty genes or replacing them with new, working copies. Most often, the new genetic material is delivered into cells using a modified virus that no longer causes disease, called a viral vector. Virus-mediated gene therapies are currently being explored for degenerative eye diseases, such as retinitis pigmentosa, and neurological disorders, like Alzheimer's and Parkinson's disease. A number of gene therapies have also been approved for treating some rare cancers, blood disorders and a childhood form of motor neuron disease. Despite the promise of virus-mediated gene therapy, there are significant hurdles to its widespread success. Viral vectors need to deliver enough genetic material to the right cells without triggering an immune response or causing serious side effects. Selecting an optimal vector is key to achieving this. A type of viruses called adeno-associated viruses (AAV) are prime candidates, partly because they can be easily engineered. However, accurately comparing the safety and efficacy of newly engineered AAVs is difficult, due to variation between test subjects and the labor and cost involved in careful testing. Öztürk et al. addressed this issue by developing an experimental pipeline called scAAVengr for comparing gene therapy vectors head-to-head. The process involves tagging potential AAV vectors with unique genetic barcodes, which can then be detected and quantified in individual cells using a technique called single-cell RNA sequencing. This means that when several vectors are used to infect lab-grown cells or a test animal at the same time, they can be tracked. The vectors can then be ranked on their ability to infect specific cell types and deliver useful genetic material. Using scAAVengr, Öztürk et al. compared viral vectors designed to target the light-sensitive cells of the retina, which allow animals to see. First, a set of promising viral vectors were evaluated using the scAAVengr pipeline in the eyes of marmosets and macaques, two small primates. Precise levels and locations of gene delivery were quantified. The top-performing vector was then identified and used to deliver Cas9, a genome editing tool, to primate retinas. Öztürk et al. also used scAAVengr to compare viral vectors in mice, analysing the vectors' ability to deliver their genetic cargo to the brain, heart, and liver. These experiments demonstrated that scAAVengr can be used to evaluate vectors in multiple tissues and in different organisms. In summary, this work outlines a method for identifying and precisely quantifying the performance of top-performing viral vectors for gene therapy. By aiding the selection of optimal viral vectors, the scAAVengr pipeline could help to improve the success of preclinical studies and early clinical trials testing gene therapies.


Assuntos
Dependovirus/fisiologia , Perfilação da Expressão Gênica/métodos , Macaca fascicularis/fisiologia , Retina/fisiologia , Transcriptoma , Transdução Genética , Animais , Vetores Genéticos
4.
J Cell Biochem ; 116(1): 170-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25169422

RESUMO

Previously, it has been reported that HN1 is involved in cytoplasmic retention and degradation of androgen receptor in an AKT dependent manner. As HN1 is a hormone inducible gene, and has been shown that it is upregulated in various cancers, we studied the importance of HN1 function in ß-catenin signaling in prostate cancer cell line, PC-3 and mammary cancer cell line MDA-MB231. Here, we demonstrated that HN1 physically associates with GSK3ß/ß-catenin destruction complex and abundantly localizes to cytoplasm, especially when the GSK3ß is phosphorylated on S9 residue. Further, ectopic HN1 expression results an increase in the ß-catenin degradation leading to loss of E-cadherin interaction, concurrently contributing to actin re-organization, colony formation and migration in cancer cell lines. Thus, we report that HN1 is an essential factor for ß-catenin turnover and signaling, augments cell growth and migration in prostate cancer cells.


Assuntos
Caderinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Próstata/metabolismo , beta Catenina/metabolismo , Caderinas/genética , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Humanos , Masculino , Proteínas Associadas aos Microtúbulos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares , Transdução de Sinais/fisiologia , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...