Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ Comput Sci ; 9: e1453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547390

RESUMO

Detection of small objects in natural scene images is a complicated problem due to the blur and depth found in the images. Detecting house numbers from the natural scene images in real-time is a computer vision problem. On the other hand, convolutional neural network (CNN) based deep learning methods have been widely used in object detection in recent years. In this study, firstly, a classical CNN-based approach is used to detect house numbers with locations from natural images in real-time. Faster R-CNN, MobileNet, YOLOv4, YOLOv5 and YOLOv7, among the commonly used CNN models, models were applied. However, satisfactory results could not be obtained due to the small size and variable depth of the door plate objects. A new approach using the fine-tuning technique is proposed to improve the performance of CNN-based deep learning models. Experimental evaluations were made on real data from Kayseri province. Classic Faster R-CNN, MobileNet, YOLOv4, YOLOv5 and YOLOv7 methods yield f1 scores of 0.763, 0.677, 0.880, 0.943 and 0.842, respectively. The proposed fine-tuned Faster R-CNN, MobileNet, YOLOv4, YOLOv5, and YOLOv7 approaches achieved f1 scores of 0.845, 0.775, 0.932, 0.972 and 0.889, respectively. Thanks to the proposed fine-tuned approach, the f1 score of all models has increased. Regarding the run time of the methods, classic Faster R-CNN detects 0.603 seconds, while fine-tuned Faster R-CNN detects 0.633 seconds. Classic MobileNet detects 0.046 seconds, while fine-tuned MobileNet detects 0.048 seconds. Classic YOLOv4 and fine-tuned YOLOv4 detect 0.235 and 0.240 seconds, respectively. Classic YOLOv5 and fine-tuned YOLOv5 detect 0.015 seconds, and classic YOLOv7 and fine-tuned YOLOv7 detect objects in 0.009 seconds. While the YOLOv7 model was the fastest running model with an average running time of 0.009 seconds, the proposed fine-tuned YOLOv5 approach achieved the highest performance with an f1 score of 0.972.

2.
Comput Biol Chem ; 57: 54-60, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25748535

RESUMO

Gene expression profiles based on high-throughput technologies contribute to molecular classifications of different cell lines and consequently to clinical diagnostic tests for cancer types and other diseases. Statistical techniques and dimension reduction methods have been devised for identifying minimal gene subset with maximal discriminative power. For sets of in silico candidate genes, assuming a unique gene signature or performing a parsimonious signature evaluation seems to be too restrictive in the context of in vitro signature validation. This is mainly due to the high complexity of largely correlated expression measurements and the existence of various oncogenic pathways. Consequently, it might be more advantageous to identify and evaluate multiple gene signatures with a similar good predictive power, which are referred to as near-optimal signatures, to be made available for biological validation. For this purpose we propose the bead-chain-plot approach originating from swarm intelligence techniques, and a small scale computational experiment is conducted in order to convey our vision. We simulate the acquisition of candidate genes by using a small pool of differentially expressed genes derived from microarray-based CNS tumour data. The application of the bead-chain-plot provides experimental evidence for improved classifications by using near-optimal signatures in validation procedures.


Assuntos
Transcriptoma , Algoritmos , Sistema Nervoso Central , Humanos , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes
3.
Sensors (Basel) ; 11(6): 6056-65, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163942

RESUMO

As the usage and development of wireless sensor networks are increasing, the problems related to these networks are being realized. Dynamic deployment is one of the main topics that directly affect the performance of the wireless sensor networks. In this paper, the artificial bee colony algorithm is applied to the dynamic deployment of stationary and mobile sensor networks to achieve better performance by trying to increase the coverage area of the network. A probabilistic detection model is considered to obtain more realistic results while computing the effectively covered area. Performance of the algorithm is compared with that of the particle swarm optimization algorithm, which is also a swarm based optimization technique and formerly used in wireless sensor network deployment. Results show artificial bee colony algorithm can be preferable in the dynamic deployment of wireless sensor networks.


Assuntos
Abelhas/fisiologia , Redes de Comunicação de Computadores , Algoritmos , Animais , Comportamento Animal , Simulação por Computador , Desenho de Equipamento , Modelos Estatísticos , Modelos Teóricos , Probabilidade , Linguagens de Programação , Fatores de Tempo , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...