Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 35(24): 10434-10445, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162044

RESUMO

ZnO-ZrO2 mixed oxide (ZnZrOx) catalysts are widely studied as selective catalysts for CO2 hydrogenation into methanol at high-temperature conditions (300-350 °C) that are preferred for the subsequent in situ zeolite-catalyzed conversion of methanol into hydrocarbons in a tandem process. Zn, a key ingredient of these mixed oxide catalysts, is known to volatilize from ZnO under high-temperature conditions, but little is known about Zn mobility and volatility in mixed oxides. Here, an array of ex situ and in situ characterization techniques (scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), Infrared (IR)) was used to reveal that Zn2+ species are mobile between the solid solution phase with ZrO2 and segregated and/or embedded ZnO clusters. Upon reductive heat treatments, partially reversible ZnO cluster growth was observed above 250 °C and eventual Zn evaporation above 550 °C. Extensive Zn evaporation leads to catalyst deactivation and methanol selectivity decline in CO2 hydrogenation. These findings extend the fundamental knowledge of Zn-containing mixed oxide catalysts and are highly relevant for the CO2-to-hydrocarbon process optimization.

2.
ACS Catal ; 12(2): 1520-1531, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35096471

RESUMO

The transition from integrated petrochemical complexes toward decentralized chemical plants utilizing distributed feedstocks calls for simpler downstream unit operations. Less separation steps are attractive for future scenarios and provide an opportunity to design the next-generation catalysts, which function efficiently with effluent reactant mixtures. The methanol to olefins (MTO) reaction constitutes the second step in the conversion of CO2, CO, and H2 to light olefins. We present a series of isomorphically substituted zeotype catalysts with the AEI topology (MAPO-18s, M = Si, Mg, Co, or Zn) and demonstrate the superior performance of the M(II)-substituted MAPO-18s in the conversion of MTO when tested at 350 °C and 20 bar with reactive feed mixtures consisting of CH3OH/CO/CO2/H2. Co-feeding high pressure H2 with methanol improved the catalyst activity over time, but simultaneously led to the hydrogenation of olefins (olefin/paraffin ratio < 0.5). Co-feeding H2/CO/CO2/N2 mixtures with methanol revealed an important, hitherto undisclosed effect of CO in hindering the hydrogenation of olefins over the Brønsted acid sites (BAS). This effect was confirmed by dedicated ethene hydrogenation studies in the absence and presence of CO co-feed. Assisted by spectroscopic investigations, we ascribe the favorable performance of M(II)APO-18 under co-feed conditions to the importance of the M(II) heteroatom in altering the polarity of the M-O bond, leading to stronger BAS. Comparing SAPO-18 and MgAPO-18 with BAS concentrations ranging between 0.2 and 0.4 mmol/gcat, the strength of the acidic site and not the density was found to be the main activity descriptor. MgAPO-18 yielded the highest activity and stability upon syngas co-feeding with methanol, demonstrating its potential to be a next-generation MTO catalyst.

3.
Eur J Inorg Chem ; 2021(46): 4762-4775, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-35874966

RESUMO

A series of Cu(I) complexes of bidentate or tetradentate Schiff base ligands bearing either 1-H-imidazole or pyridine moieties were synthesized. The complexes were studied by a combination of NMR and X-ray spectroscopic techniques. The differences between the imidazole- and pyridine-based ligands were examined by 1H, 13C and 15N NMR spectroscopy. The magnitude of the 15Nimine coordination shifts was found to be strongly affected by the nature of the heterocycle in the complexes. These trends showed good correlation with the obtained Cu-Nimine bond lengths from single-crystal X-ray diffraction measurements. Variable-temperature NMR experiments, in combination with diffusion ordered spectroscopy (DOSY) revealed that one of the complexes underwent a temperature-dependent interconversion between a monomer, a dimer and a higher aggregate. The complexes bearing tetradentate imidazole ligands were further studied using Cu K-edge XAS and VtC XES, where DFT-assisted assignment of spectral features suggested that these complexes may form polynuclear oligomers in solid state. Additionally, the Cu(II) analogue of one of the complexes was incorporated into a metal-organic framework (MOF) as a way to obtain discrete, mononuclear complexes in the solid state.

4.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 11): 1725-1727, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209341

RESUMO

The title compound, an (N^C)-cyclo-metalated gold(III) diazide, namely, di-azido-[5-eth-oxy-carbonyl-2-(5-eth-oxy-carbonyl-pyridin-2-yl)phenyl-κ2 C 1,N]gold(III), [Au(C17H16NO4)(N3)2] or Au(ppyEt)(N3)2, was synthesized by reacting Au(ppyEt)Cl2 with NaN3 in water for 24 h. The complex has been structurally characterized and features a gold center with a square-planar environment. The Au-N(azide) bond lengths are significantly different depending on the influence of the atom trans to the azide group [Au-N(trans to C) of 2.067 (2) Šversus Au-N(trans to N) of 2.042 (2) Å]. The azide groups are twisted in-and-out of plane by 56.2 (2)°.

5.
Angew Chem Int Ed Engl ; 59(48): 21397-21402, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-32902113

RESUMO

Herein, we report the discovery of a toroidal inorganic cluster of zirconium(IV) oxysulfate of unprecedented size with the formula Zr70 (SO4 )58 (O/OH)146 ⋅x(H2 O) (Zr70 ), which displays different packing of ring units and thus several polymorphic crystal structures. The ring measures over 3 nm across, has an inner cavity of 1 nm and displays a pseudo-10-fold rotational symmetry of Zr6 octahedra bridged by an additional Zr in the outer rim of the ring. Depending on the co-crystallizing species, the rings form various crystalline phases in which the torus units are connected in extended chain and network structures. One phase, in which the ring units are arranged in layers and form one-dimensional channels, displays high permanent porosity (BET surface area: 241 m2 g-1 ), and thus demonstrates a functional property for potential use in, for example, adsorption or heterogeneous catalysis.

6.
J Am Chem Soc ; 142(13): 6439-6446, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32168451

RESUMO

Gold catalysis has become one of the fastest growing fields in chemistry, providing new organic transformations and offering excellent chemoselectivities under mild reaction conditions. Methodological developments have been driven by wide applicability in the synthesis of complex structures, whereas the mechanistic understanding of Au(III)-mediated processes remains scanty and have become the Achilles' heel of methodology development. Herein, the systematic investigation of the reactivity of bis(pyridine)-ligated Au(III) complexes is presented, based on NMR spectroscopic, X-ray crystallographic, and DFT data. The electron density of pyridines modulates the catalytic activity of Au(III) complexes in propargyl ester cyclopropanation of styrene. To avoid strain induced by a ligand with a nonoptimal nitrogen-nitrogen distance, bidentate bis(pyridine)-Au(III) complexes convert into dimers. For the first time, bis(pyridine)Au(I) complexes are shown to be catalytically active, with their reactivity being modulated by strain.

7.
Dalton Trans ; 49(11): 3473-3479, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32103221

RESUMO

The synthesis and characterization of a series of N-heterocyclic carbene (NHC) complexes of Au(iii), (NHC)AuCl3, is described. High yields are obtained when the corresponding Au(i) species (NHC)AuCl are oxidized with inexpensive aqua regia. The oxidation is in some cases accompanied by substitution and/or anti addition of Cl2 across the backbone C[double bond, length as m-dash]C bond of unsaturated NHC ligands.

8.
Dalton Trans ; 49(8): 2724-2733, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32052807

RESUMO

The new linker molecule (H2O3PCH2)2N-CH2C6H4SO3H, (4-{[bis(phosphonomethyl)amino]methyl}benzene-sulfonic acid, H5L), bearing both phosphonic and sulfonic acid groups, was employed for the synthesis of new coordination polymers (CPs). Four new CPs of composition [Mg(H3L)(H2O)2]·H2O (1), [Mg2(HL)(H2O)6]·2H2O (2), [Ba(H3L)(H2O)]·H2O (3) and [Pb2(HL)]·H2O (4), were discovered using high-throughput methods and all structures were determined by single-crystal X-ray diffraction (SCXRD). With increasing ionic radius of the metal ion, an increase in coordination number from CN = 6 (Mg2+) to CN = 9 (Ba2+) and an increase in the dimensionality of the network from 1D to 3D is observed. This is reflected in the composition of the IBU and the number of metal ions that are connected by each linker molecule, i.e. from three in 1 to ten in 4. The connection of the IBUs leads to 1D and 2D structures in 1 and 2 with non-coordinating sulfonate groups, while 3 and 4 crystallise in MOF-type structures and coordination of the sulfonate groups is observed. The compounds exhibit thermal stabilities between 200 (2) and 345 °C (4) as proven by variable temperature powder X-ray diffraction (VT-PXRD) measurements. Title compound 4 contains micropores of 4 × 2 Å and reversible H2O uptake of 50 mg g-1 was demonstrated by vapour sorption measurements, making it the first porous metal phosphonatosulfonate. Detailed characterisation, i.e. CHNS and TG analysis as well as NMR and IR spectroscopy measurements confirm the phase purity of the title compounds.

9.
Chem Sci ; 11(30): 7979-7990, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34094166

RESUMO

Three-center, four-electron bonds provide unusually strong interactions; however, their nature remains ununderstood. Investigations of the strength, symmetry and the covalent versus electrostatic character of three-center hydrogen bonds have vastly contributed to the understanding of chemical bonding, whereas the assessments of the analogous three-center halogen, chalcogen, tetrel and metallic [small sigma, Greek, circumflex]-type long bonding are still lagging behind. Herein, we disclose the X-ray crystallographic, NMR spectroscopic and computational investigation of three-center, four-electron [D-X-D]+ bonding for a variety of cations (X+ = H+, Li+, Na+, F+, Cl+, Br+, I+, Ag+ and Au+) using a benchmark bidentate model system. Formation of a three-center bond, [D-X-D]+ is accompanied by an at least 30% shortening of the D-X bonds. We introduce a numerical index that correlates symmetry to the ionic size and the electron affinity of the central cation, X+. Providing an improved understanding of the fundamental factors determining bond symmetry on a comprehensive level is expected to facilitate future developments and applications of secondary bonding and hypervalent chemistry.

10.
RSC Adv ; 10(15): 9052-9062, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35496564

RESUMO

Four different ruthenium(ii) complexes were incorporated into the metal-organic framework (MOF) UiO-67 using three different synthetic strategies: premade linker synthesis, postsynthetic functionalization, and postsynthetic linker exchange. One of these complexes was of the type (N-N)3Ru2+, and three of the complexes were of the type (N-N)2(N-C)Ru+, where N-N is a bipyridine-type ligand and N-C is a cyclometalated phenylpyridine-type ligand. The resulting materials were characterized by PXRD, SC-XRD (the postsynthetic functionalization MOFs), N2 sorption, TGA-DSC, SEM, EDS, and UV-Vis spectroscopy, and were digested in base for subsequent 1H NMR analysis. The absorption profiles of the MOFs that were functionalized with cyclometalated Ru(ii) complexes extend significantly further into the visible region of the spectrum compared to the absorption profiles of the MOFs that were functionalized with the non-cyclometalated reference, (N-N)3Ru2+.

11.
Dalton Trans ; 49(1): 12-16, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31808493

RESUMO

The thermolabile acetylene dicarboxylic acid has been introduced as linker in UiO-66 topology, synthetizing the compound with formula [Ce6O4(OH)4(ADC)6] and denoted as Ce-UiO-66-ADC MOF. The characterization by multi-technique approach coupled with computational modelling revealed a peculiar intrinsic defective nature related to the nature of the linker.

12.
J Am Chem Soc ; 142(2): 999-1009, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31794194

RESUMO

Metal-organic frameworks (MOFs) show great prospect as catalysts and catalyst support materials. Yet, studies that address their dynamic, kinetic, and mechanistic role in target reactions are scarce. In this study, an exceptionally stable MOF catalyst consisting of Pt nanoparticles (NPs) embedded in a Zr-based UiO-67 MOF was subject to steady-state and transient kinetic studies involving H/D and 13C/12C exchange, coupled with operando infrared spectroscopy and density functional theory (DFT) modeling, targeting methanol formation from CO2/H2 feeds at 170 °C and 1-8 bar pressure. The study revealed that methanol is formed at the interface between the Pt NPs and defect Zr nodes via formate species attached to the Zr nodes. Methanol formation is mechanistically separated from the formation of coproducts CO and methane, except for hydrogen activation on the Pt NPs. Careful analysis of transient data revealed that the number of intermediates was higher than the number of open Zr sites in the MOF lattice around each Pt NP. Hence, additional Zr sites must be available for formate formation. DFT modeling revealed that Pt NP growth is sufficiently energetically favored to enable displacement of linkers and creation of open Zr sites during pretreatment. However, linker displacement during formate formation is energetically disfavored, in line with the excellent catalyst stability observed experimentally. Overall, the study provides firm evidence that methanol is formed at the interface of Pt NPs and linker-deficient Zr6O8 nodes resting on the Pt NP surface.

13.
Angew Chem Int Ed Engl ; 59(4): 1516-1520, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31710154

RESUMO

A highly asymmetric AuIII η3 -allyl complex has been generated by treating Au(η1 -allyl)Br(tpy) (tpy=2-(p-tolyl)pyridine) with AgNTf2 . The resulting η3 -allyl complex has been characterized by NMR spectroscopy and X-ray crystallography. DFT calculations and variable temperature 1 H NMR suggest that the allyl ligand is highly fluxional.

14.
Inorg Chem ; 58(2): 1607-1620, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30624909

RESUMO

We describe the synthesis and corresponding full characterization of the set of UiO-66 metal-organic frameworks (MOFs) with 1,4-benzenedicarboxylate (C6H4(COOH)2, hereafter H2BDC) and 1,4-naphthalenedicarboxylate (C10H6(COOH)2, hereafter H2NDC) mixed linkers with NDC contents of 0, 25, 50, and 100%. Their structural (powder X-ray diffraction, PXRD), adsorptive (N2, H2, and CO2), vibrational (IR/Raman), and thermal stability (thermogravimetric analysis, TGA) properties quantitatively correlate with the NDC content in the material. The UiO-66 phase topology is conserved at all relative fractions of BDC/NDC. The comparison between the synchrotron radiation PXRD and 77 K N2-adsorption isotherms obtained on the 50:50 BDC/NDC sample and on a mechanical mixture of the pure BDC and NDC samples univocally proves that in the mixed linkers of the MOFs the BDC and NDC linkers are shared in each MOF crystal, discarding the hypothesis of two independent phases, where each crystal contains only BDC or NDC linkers. The careful tuning of the NDC content opens a way for controlled alteration of the sorption properties of the resulting material as testified by the H2-adsorption experiments, showing that the relative ranking of the materials in H2 adsorption is different in different equilibrium-pressure ranges: at low pressures, 100NDC is the most efficient sample, while with increasing pressure, its relative performance progressively declines; at high pressures, the ranking follows the BDC content, reflecting the larger internal pore volume available in the MOFs with a higher fraction of smaller linkers. The H2-adsorption isotherms normalized by the sample Brunauer-Emmett-Teller specific surface area show, in the whole pressure range, that the surface-area-specific H2-adsorption capabilities in UiO-66 MOFs increase progressively with increasing NDC content. Density functional theory calculations, using the hybrid B3LYP exchange correlation functional and quadruple-ζ with four polarization functions (QZ4P) basis set, show that the interaction of H2 with the H2NDC linker results in an adsorption energy larger by about 15% with respect to that calculated for adsorption on the H2BDC linker.

15.
Dalton Trans ; 48(3): 982-988, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30574638

RESUMO

Magnesium(ii) complexes, [Mg2+(hfac-)3][Cation+], were prepared as solids from hydrophobic hexafluoroacetylacetonate ionic liquids ([Cation+][hfac-] ILs) and Mg(Tf2N)2. 1-Butyl-3-methylimidazolium ([C4mim]), N-butylpyridinium ([C4Pyr]), N-butyl-N-methylpiperidinium ([C4Pip]), N-hexyl-N-methylmorpholinium ([C6Morp]) and N-butyl-N-methylpyrrolidinium ([C4pyrr]) were used as cationic cores. The [C4Pip][hfac], [C4Pyr][hfac] and [C6Morp][hfac] ILs were prepared for the first time. New Mg(ii) complexes, [C4mim][Mg(hfac)3], [C4Pip][Mg(hfac)3], [C4Pyr][Mg(hfac)3], [C6Morp][Mg(hfac)3] and [C4Pyrr][Mg(hfac)3], were obtained from the [hfac] based ILs. The crystal structures of the novel Mg(ii) complexes show the coordination of three [hfac] anions to the Mg2+ ion through the two oxygen atoms of each [hfac] anion.

16.
Chem Commun (Camb) ; 54(79): 11104-11107, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30221264

RESUMO

A (N,CAr,CAlk) Au(iii) pincer complex has been synthesized from Au(OAc)3 (OAc = OCOCH3) and 2-(3,5-di-tert-butylphenyl)pyridine (L1) involving a Csp3-H bond activation by electrophilic substitution. In agreement with DFT calculations, the resulting complex significantly improves the performance of Au(tpy)(OAcF)2 (tpy = 2-(p-tolyl)pyridine, OAcF = OCOCF3) in the catalytic trifluoroacetylation of acetylene.

17.
Faraday Discuss ; 208(0): 287-306, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29796547

RESUMO

Functionalization of metal-organic frameworks with metal nanoparticles (NPs) is a promising way for producing advanced materials for catalytic applications. We present the synthesis and in situ characterization of palladium NPs encapsulated inside a functionalized UiO-67 metal-organic framework. The initial structure was synthesized with 10% of PdCl2bpydc moieties with grafted Pd ions replacing standard 4,4'-biphenyldicarboxylate linkers. This material exhibits the same high crystallinity and thermal stability of standard UiO-67. Formation of palladium NPs was initiated by sample activation in hydrogen and monitored by in situ X-ray powder diffraction and X-ray absorption spectroscopy (XAS). The reduction of PdII ions to Pd0 occurs above 200 °C in 6% H2/He flow. The formed palladium NPs have an average size of 2.1 nm as limited by the cavities of UiO-67 structure. The resulting material showed high activity towards ethylene hydrogenation. Under reaction conditions, palladium was found to form a carbide structure indicated by operando XAS, while formation of ethane was monitored by mass spectroscopy and infra-red spectroscopy.

18.
Dalton Trans ; 47(8): 2589-2601, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29384547

RESUMO

The syntheses and characterization of nine new cyclometalated ruthenium complexes are reported. These structures consist of Ru(ii) with bipyridine and phenylpyridine ligands which are substituted with ester or carboxylate groups. Two of the complexes were extensively studied and their properties were compared to those of two previously reported structures. The identities of the compounds were confirmed by NMR, HR-MS and single crystal XRD, and the electronic properties were investigated by UV-Vis spectroscopy. DFT and TD-DFT calculations showed that the intense absorbances in the visible region of the spectrum of these cyclometalated complexes are due to electronic excitations to virtual orbitals located on the carboxylated ligands. These results indicate that the compounds are promising candidates as sensitizers for more efficient photocatalysis with sunlight. Further, the carboxylate groups should facilitate their use as linkers in metal-organic frameworks.

19.
Chem Commun (Camb) ; 54(4): 389-392, 2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29243766

RESUMO

The new porphyrin-based tetraphosphonic acid (Ni-H8TPPP) was employed in the synthesis of four isostructural MOFs of composition [M(Ni-H6TPPP)(H2O)], denoted CAU-29 (M = Mn, Co, Ni, Cd). Ni-CAU-29 was thoroughly characterized regarding its thermal and chemical stability as well as for proton conductivity.

20.
Dalton Trans ; 45(37): 14719-24, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27283880

RESUMO

Incorporation of the simple, readily available, building blocks ethylene, water and acetonitrile into Au(tpy)(OCOCF3)2 (tpy = 2-(p-tolyl)pyridine) in a one-step reaction leads to high yields of a new 6-membered ring gold(iii) metallacycle complex. The metallacycle has been characterized spectroscopically and crystallographically, and the mechanism of its formation has been investigated with the aid of DFT calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...