Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 201: 113961, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35026547

RESUMO

Considering the limitations of well-known traditional detection techniques, innovative research studies have focused on the development of new sensors to offer label-free, highly sensitive, real-time, low-cost, and rapid detection for biomolecular interactions. In this study, we demonstrate immunoglobulin G (IgG) detection in aqueous solutions by using real-time and label-free kinetic measurements of the Interferometric Reflectance Imaging Sensor (IRIS) system. By performing kinetic characterization experiments, the sensor's performance is comprehensively evaluated and a high correlation coefficient value (>0.94) is obtained in the IgG concentration range of 1-50 µg/mL with a low detection limit (0.25 µg/mL or 1.67 nM). Moreover, the highly sensitive imaging system ensures accurate quantification and reliable validation of recorded binding events, offering new perspectives in terms of direct biomarker detection for clinical applications.


Assuntos
Técnicas Biossensoriais , Imunoglobulina G , Interferometria
2.
ACS Sens ; 6(1): 229-237, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33427442

RESUMO

Here, we demonstrate real-time multiplexed virus detection by applying a DNA-directed antibody immobilization technique in a single-particle interferometric reflectance imaging sensor (SP-IRIS). In this technique, the biosensor chip surface spotted with different DNA sequences is converted to a multiplexed antibody array by flowing antibody-DNA conjugates and allowing for specific DNA-DNA hybridization. The resulting antibody array is shown to detect three different recombinant vesicular stomatitis viruses (rVSVs), which are genetically engineered to express surface glycoproteins of Ebola, Marburg, and Lassa viruses in real time in a disposable microfluidic cartridge. We also show that this method can be modified to produce a single-step, homogeneous assay format by mixing the antibody-DNA conjugates with the virus sample in the solution phase prior to incubation in the microfluidic cartridge, eliminating the antibody immobilization step. This homogenous approach achieved detection of the model Ebola virus, rVSV-EBOV, at a concentration of 100 PFU/mL in 1 h. Finally, we demonstrate the feasibility of this homogeneous technique as a rapid test using a passive microfluidic cartridge. A concentration of 104 PFU/mL was detectable under 10 min for the rVSV-Ebola virus. Utilizing DNA microarrays for antibody-based diagnostics is an alternative approach to antibody microarrays and offers advantages such as configurable sensor surface, long-term storage ability, and decreased antibody use. We believe that these properties will make SP-IRIS a versatile and robust platform for point-of-care diagnostics applications.


Assuntos
Técnicas Biossensoriais , Ebolavirus , Vírus , Ebolavirus/genética , Análise de Sequência com Séries de Oligonucleotídeos , Vesiculovirus/genética
3.
Adv Clin Exp Med ; 29(12): 1417-1424, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33389832

RESUMO

BACKGROUND: Intestinal ischemic reperfusion injury (IRI) represents a great challenge in clinical practice, with high morbidity and mortality. Vascular endothelial growth factor (VEGF), as a signal protein, contributes to vasculogenesis and angiogenesis. OBJECTIVES: To evaluate the local effectiveness of VEGF following intestinal IRI and its relation with application time. MATERIAL AND METHODS: Thirty Wistar albino rats were allocated to 5 groups and underwent laparotomy. The superior mesenteric arteries (SMA) were dissected in 4 groups, while the control group (Gr C) underwent a resection of small and large intestines. The VEGF group (Gr V) received VEGF following SMA dissection, with no further intervention, and the remaining 3 groups were subjected to ischemia for 90 min through occlusion of SMA and reperfusion for 4 h. Ischemic reperfusion group (Gr I/R) received no additional medication, while the remaining 2 groups received VEGF just before ischemia (Gr V+I/R) and during reperfusion (Gr I/R+V). RESULTS: Both applications of VEGF caused decreases in plasma levels of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), intestinal malondialdehyde (MDA), oxidized glutathione, protein carbonyl levels, and increases in intestinal total glutathione and superoxide dismutase (SOD) levels. Telomerase activity, which disappeared for Gr I/R, was found to be elevated following both treatment groups. Similarly, the histopathological scores were found better for both treatment groups, but Gr V-I/R represented best outcomes. CONCLUSIONS: The findings of our study revealed that VEGF, applied either before ischemia or during reperfusion, is effective on local damage following intestinal IRI. By interpreting the biochemical analysis and histopathological findings, we conclude either treatment option to be considered according to the reason of intestinal IRI.


Assuntos
Estresse Oxidativo , Traumatismo por Reperfusão , Animais , Inflamação , Intestinos , Malondialdeído , Ratos , Reperfusão , Telomerase , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular
4.
Methods Mol Biol ; 2027: 15-28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31309469

RESUMO

The determination of kinetic information and appropriate binding pairs is fundamental to the proper optimization and selection of ligands used in immunoassays, diagnostics, and therapeutics. However, the ability to estimate such parameters in a multiplexed and inexpensive format remains difficult and modification of the ligand is often necessary. Here, we detail the methods and materials necessary to evaluate hundreds of unlabeled ligands simultaneously using the interferometric reflectance imaging sensor (IRIS). The incorporation of a low-cost fluidic cartridge that integrates on the top of the sensor simplifies reagent handling considerably.


Assuntos
Equipamentos Descartáveis/economia , Imunoensaio/instrumentação , Interferometria/instrumentação , Dispositivos Lab-On-A-Chip/economia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Vírus da Dengue/imunologia , Imunoensaio/economia , Interferometria/economia , Cinética , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
5.
World Neurosurg ; 120: e33-e41, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30031958

RESUMO

OBJECTIVE: Spinal cord ischemia is a serious and catastrophic clinicopathologic condition. Despite studies reported over the last 20 years, alternative and efficient treatment options remain unclear. We examined the neuroprotective effects of vigabatrin on a spinal ischemia-reperfusion model. METHODS: We divided 24 New Zealand rabbits into 4 groups (control, ischemia reperfusion, and low-dose and high-dose vigabatrin). The control group underwent only abdominal surgery, whereas an abdominal aortic cross-clamp model of spinal ischemia was performed in the other groups. Clips were removed after 30 minutes and 50 and 150 mg/kg vigabatrin was administered intraperitoneally to the low-dose and high-dose groups, respectively. Neurologic examination was performed for 48 hours, after which the rabbits were sacrificed and a blood sample obtained. Biochemical examination of malondialdehyde, advanced oxidation protein products, total nitric oxide, and glutathione levels and superoxide dismutase activities in plasma and tissue sample, and histopathologic examination of the spinal cord were performed and statistical results compared between the groups. RESULTS: Low-dose vigabatrin had statistically significant effects of neuroprotection on spinal ischemia. Although high-dose vigabatrin had similar effects, the results were not statistically significant for all parameters of biochemical analysis. In addition, histopathologic examination showed some toxic effects of high-dose vigabatrin. CONCLUSIONS: Neuroprotective effects of vigabatrin are shown. For clinical use, further studies are needed.


Assuntos
GABAérgicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/metabolismo , Isquemia do Cordão Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Vigabatrina/farmacologia , Produtos da Oxidação Avançada de Proteínas/efeitos dos fármacos , Produtos da Oxidação Avançada de Proteínas/metabolismo , Animais , Constrição , Glutationa/efeitos dos fármacos , Glutationa/metabolismo , Masculino , Malondialdeído/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Coelhos , Medula Espinal/metabolismo , Medula Espinal/patologia
6.
ACS Nano ; 12(6): 5880-5887, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29756761

RESUMO

DNA and protein microarrays are a high-throughput technology that allow the simultaneous quantification of tens of thousands of different biomolecular species. The mediocre sensitivity and limited dynamic range of traditional fluorescence microarrays compared to other detection techniques have been the technology's Achilles' heel and prevented their adoption for many biomedical and clinical diagnostic applications. Previous work to enhance the sensitivity of microarray readout to the single-molecule ("digital") regime have either required signal amplifying chemistry or sacrificed throughput, nixing the platform's primary advantages. Here, we report the development of a digital microarray which extends both the sensitivity and dynamic range of microarrays by about 3 orders of magnitude. This technique uses functionalized gold nanorods as single-molecule labels and an interferometric scanner which can rapidly enumerate individual nanorods by imaging them with a 10× objective lens. This approach does not require any chemical signal enhancement such as silver deposition and scans arrays with a throughput similar to commercial fluorescence scanners. By combining single-nanoparticle enumeration and ensemble measurements of spots when the particles are very dense, this system achieves a dynamic range of about 6 orders of magnitude directly from a single scan. As a proof-of-concept digital protein microarray assay, we demonstrated detection of hepatitis B virus surface antigen in buffer with a limit of detection of 3.2 pg/mL. More broadly, the technique's simplicity and high-throughput nature make digital microarrays a flexible platform technology with a wide range of potential applications in biomedical research and clinical diagnostics.

7.
Methods Mol Biol ; 1571: 187-206, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28281257

RESUMO

Protein microarrays are emerging tools which have become very powerful in multiplexed detection technologies. A variety of proteins can be immobilized on a sensor chip allowing for multiplexed diagnostics. Therefore, various types of analyte in a small volume of sample can be detected simultaneously. Protein immobilization is a crucial step for creating a robust and sensitive protein microarray-based detection system. In order to achieve a successful protein immobilization and preserve the activity of the proteins after immobilization, DNA-directed immobilization is a promising technique. Here, we present the design and the use of DNA-directed immobilized (DDI) antibodies in fabrication of robust protein microarrays. We focus on application of protein microarrays for capturing and detecting nanoparticles such as intact viruses. Experimental results on Single-particle interferometric reflectance imaging sensor (SP-IRIS) are used to validate the advantages of the DDI method.


Assuntos
Anticorpos Imobilizados , Técnicas Biossensoriais/métodos , DNA , Imagem Molecular/métodos , Análise Serial de Proteínas/métodos , Técnicas Biossensoriais/instrumentação , Sondas de DNA , Processamento de Imagem Assistida por Computador/métodos , Imunoconjugados , Microfluídica/instrumentação , Microscopia/métodos , Imagem Molecular/instrumentação , Análise Serial de Proteínas/instrumentação , Estatística como Assunto/métodos , Vírus/imunologia
8.
Anal Chem ; 87(20): 10505-12, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26378807

RESUMO

Here, we describe the use of DNA-conjugated antibodies for rapid and sensitive detection of whole viruses using a single-particle interferometric reflectance imaging sensor (SP-IRIS), a simple, label-free biosensor capable of imaging individual nanoparticles. First, we characterize the elevation of the antibodies conjugated to a DNA sequence on a three-dimensional (3-D) polymeric surface using a fluorescence axial localization technique, spectral self-interference fluorescence microscopy (SSFM). Our results indicate that using DNA linkers results in significant elevation of the antibodies on the 3-D polymeric surface. We subsequently show the specific detection of pseudotyped vesicular stomatitis virus (VSV) as a model virus on SP-IRIS platform. We demonstrate that DNA-conjugated antibodies improve the capture efficiency by achieving the maximal virus capture for an antibody density as low as 0.72 ng/mm(2), whereas for unmodified antibody, the optimal virus capture requires six times greater antibody density on the sensor surface. We also show that using DNA conjugated anti-EBOV GP (Ebola virus glycoprotein) improves the sensitivity of EBOV-GP carrying VSV detection compared to directly immobilized antibodies. Furthermore, utilizing a DNA surface for conversion to an antibody array offers an easier manufacturing process by replacing the antibody printing step with DNA printing. The DNA-directed immobilization technique also has the added advantages of programmable sensor surface generation based on the need and resistance to high temperatures required for microfluidic device fabrication. These capabilities improve the existing SP-IRIS technology, resulting in a more robust and versatile platform, ideal for point-of-care diagnostics applications.


Assuntos
Anticorpos Imobilizados/química , Técnicas Biossensoriais , Sondas de DNA/química , DNA/química , Vesiculovirus/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Microscopia de Fluorescência/instrumentação , Vesiculovirus/patogenicidade
9.
Sensors (Basel) ; 15(7): 17649-65, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26205273

RESUMO

Over the last decade, the growing need in disease diagnostics has stimulated rapid development of new technologies with unprecedented capabilities. Recent emerging infectious diseases and epidemics have revealed the shortcomings of existing diagnostics tools, and the necessity for further improvements. Optical biosensors can lay the foundations for future generation diagnostics by providing means to detect biomarkers in a highly sensitive, specific, quantitative and multiplexed fashion. Here, we review an optical sensing technology, Interferometric Reflectance Imaging Sensor (IRIS), and the relevant features of this multifunctional platform for quantitative, label-free and dynamic detection. We discuss two distinct modalities for IRIS: (i) low-magnification (ensemble biomolecular mass measurements) and (ii) high-magnification (digital detection of individual nanoparticles) along with their applications, including label-free detection of multiplexed protein chips, measurement of single nucleotide polymorphism, quantification of transcription factor DNA binding, and high sensitivity digital sensing and characterization of nanoparticles and viruses.


Assuntos
Técnicas Biossensoriais/instrumentação , Diagnóstico por Imagem/instrumentação , Interferometria/instrumentação , Processamento de Sinais Assistido por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...