Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202410237, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151024

RESUMO

The gut-derived peptide hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play important physiological roles. Stabilized agonists of the GLP-1 receptor (GLP-1R) and the GIP receptor (GIPR) for the management of diabetes and obesity have generated widespread enthusiasm and have become blockbuster drugs. These therapeutics are refractory to the action of dipeptidyl peptidase-4 (DPP4), that catalyzes rapid removal of the two N-terminal residues of the native peptides, in turn severely diminishing their activity profiles.  Here we report that a single atom change from carbon to nitrogen in the backbone of the entire peptide make them refractory to DPP4 action while still retaining full potency and efficacy at their respective receptors.  This was accomplished by use of aza-amino acids, that are bioisosteric replacements for a-amino acids that perturb the structural backbone and local side chain conformations.  Molecular dynamics simulations reveal that aza-amino acid can populate the same conformational space that GLP-1 adopts when bound to the GLP-1R. The insertion of an aza-amino acid at the second position from the N-terminus in semaglutide and in a dual agonist of GLP-1R and GIPR further demonstrates its capability as a viable alternative to current DPP4 resistance strategies while offering additional structural variety.

2.
ACS Chem Biol ; 19(7): 1453-1465, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38935975

RESUMO

The incretin gut hormone glucagon-like peptide-1 (GLP-1) has become a household name because of its ability to induce glucose-dependent insulin release with accompanying weight loss in patients. Indeed, derivatives of the peptide exert numerous pleiotropic actions that favorably affect other metabolic functions, and consequently, such compounds are being considered as treatments for a variety of ailments. The ability of native GLP-1 to function as a clinical drug is severely limited because of its short half-life in vivo. All of the beneficial effects of GLP-1 come from its agonism at the cognate receptor, GLP-1R. In our quest for long-lived activation of the receptor, we hypothesized that an agonist that had the ability to covalently cross-link with GLP-1R would prove useful. We here report the structure-guided design of peptide analogues containing an electrophilic warhead that could be covalently captured by a resident native nucleophile on the receptor. The compounds were evaluated using washout experiments, and resistance to such washing serves as an index of prolonged activation and covalent capture, which we use to tabulate longevity and robust long-lived GLP-1R agonism. The addition of SulF (cross-linkable warhead), an N-terminal trifluoroethyl group (for protease protection), and a C18 diacid lipid (protractor) all contributed to the increased wash resistance of GLP-1. The most effective compound based on the wash resistance metric, C2K26DAC18_K34SulF, has all three elements outlined and may serve as a blueprint and a proof-of-concept scaffold for the design of clinically useful molecules.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA