Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980154

RESUMO

Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and post-harvest regulation), plant responses to environmental signals (endoplasmic-reticulum associated degradation, chloroplast-associated degradation, drought tolerance, the growth-defense tradeoff)), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.

2.
Annu Rev Phytopathol ; 61: 351-375, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37253695

RESUMO

The plant immune system perceives pathogens to trigger defense responses. In turn, pathogens secrete effector molecules to subvert these defense responses. The initiation and maintenance of defense responses involve not only de novo synthesis of regulatory proteins and enzymes but also their regulated degradation. The latter is achieved through protein degradation pathways such as the ubiquitin-proteasome system (UPS). The UPS regulates all stages of immunity, from the perception of the pathogen to the execution of the response, and, therefore, constitutes an ideal candidate for microbial manipulation of the host. Pathogen effector molecules interfere with the plant UPS through several mechanisms. This includes hijacking general UPS functions or perturbing its ability to degrade specific targets. In this review, we describe how the UPS regulates different immunity-related processes and how pathogens subvert this to promote disease.


Assuntos
Cognição , Complexo de Endopeptidases do Proteassoma , Citoplasma , Proteólise , Ubiquitina
3.
Nat Plants ; 9(5): 685-686, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37160997
4.
Trends Plant Sci ; 28(6): 698-714, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36801193

RESUMO

Protein homeostasis is epitomized by an equilibrium between protein biosynthesis and degradation: the 'life and death' of proteins. Approximately one-third of newly synthesized proteins are degraded. As such, protein turnover is required to maintain cellular integrity and survival. Autophagy and the ubiquitin-proteasome system (UPS) are the two principal degradation pathways in eukaryotes. Both pathways orchestrate many cellular processes during development and upon environmental stimuli. Ubiquitination of degradation targets is used as a 'death' signal by both processes. Recent findings revealed a direct functional link between both pathways. Here, we summarize key findings in the field of protein homeostasis, with an emphasis on the newly revealed crosstalk between both degradation machineries and how it is decided which pathway facilitates target degradation.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo , Ubiquitinação , Autofagia
5.
Methods Mol Biol ; 2581: 351-363, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36413330

RESUMO

The proteasome is a key component for regulation of protein turnover across kingdoms. The proteasome has been shown to be involved in or affected by various stress conditions in multiple model organisms in plants. As such, studying proteasome homeostasis is crucial to understand its participation in different cellular conditions. However, the involvement of the proteasome in many cellular processes and its interplay with other degradation pathways hamper the interpretation of experiments based on a single approach. Thus, it is crucial to formulate a framework to investigate proteasome dynamics in different model organisms including plants. Here, we describe a pipeline to monitor proteasome homeostasis using four different methods including (i) luminescent-based proteasome activity measurement, (ii) immunoblot analysis of ubiquitinated proteins, (iii) evaluation of proteasome subunit protein levels, and (iv) monitoring of the proteasome stress regulon on mRNA levels using quantitative real-time PCR (polymerase chain reaction).


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas Ubiquitinadas , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Homeostase , Monitorização Fisiológica , Proteínas Ubiquitinadas/metabolismo
6.
Elife ; 112022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36044021

RESUMO

Membrane lipids, and especially phosphoinositides, are differentially enriched within the eukaryotic endomembrane system. This generates a landmark code by modulating the properties of each membrane. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] specifically accumulates at the plasma membrane in yeast, animal, and plant cells, where it regulates a wide range of cellular processes including endocytic trafficking. However, the functional consequences of mispatterning PI(4,5)P2 in plants are unknown. Here, we functionally characterized the putative phosphoinositide phosphatase SUPPRESSOR OF ACTIN9 (SAC9) in Arabidopsis thaliana (Arabidopsis). We found that SAC9 depletion led to the ectopic localization of PI(4,5)P2 on cortical intracellular compartments, which depends on PI4P and PI(4,5)P2 production at the plasma membrane. SAC9 localizes to a subpopulation of trans-Golgi Network/early endosomes that are enriched in a region close to the cell cortex and that are coated with clathrin. Furthermore, it interacts and colocalizes with Src Homology 3 Domain Protein 2 (SH3P2), a protein involved in endocytic trafficking. In the absence of SAC9, SH3P2 localization is altered and the clathrin-mediated endocytosis rate is reduced. Together, our results highlight the importance of restricting PI(4,5)P2 at the plasma membrane and illustrate that one of the consequences of PI(4,5)P2 misspatterning in plants is to impact the endocytic trafficking.


Assuntos
Arabidopsis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitose , Endossomos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositóis/metabolismo , Vesículas Transportadoras/metabolismo
7.
EMBO J ; 41(13): e110352, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35620914

RESUMO

Beyond its role in cellular homeostasis, autophagy plays anti- and promicrobial roles in host-microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well-described in animals, the extent to which xenophagy contributes to plant-bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type-III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense-related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense-related autophagy in plant-bacteria interactions.


Assuntos
Doenças das Plantas , Fatores de Virulência , Animais , Autofagia , Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
Essays Biochem ; 66(2): 189-206, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35635102

RESUMO

Plant immunity is antagonized by pathogenic effectors during interactions with bacteria, viruses or oomycetes. These effectors target core plant processes to promote infection. One such core plant process is autophagy, a conserved proteolytic pathway involved in ensuring cellular homeostasis. It involves the formation of autophagosomes around proteins destined for autophagic degradation. Many cellular components from organelles, aggregates, inactive or misfolded proteins have been found to be degraded via autophagy. Increasing evidence points to a high degree of specificity during the targeting of these components, strengthening the idea of selective autophagy. Selective autophagy receptors bridge the gap between target proteins and the forming autophagosome. To achieve this, the receptors are able to recognize specifically their target proteins in a ubiquitin-dependent or -independent manner, and to bind to ATG8 via canonical or non-canonical ATG8-interacting motifs. Some receptors have also been shown to require oligomerization to achieve their function in autophagic degradation. We summarize the recent advances in the role of selective autophagy in plant immunity and highlight NBR1 as a key player. However, not many selective autophagy receptors, especially those functioning in immunity, have been characterized in plants. We propose an in silico approach to identify novel receptors, by screening the Arabidopsis proteome for proteins containing features theoretically needed for a selective autophagy receptor. To corroborate these data, the transcript levels of these proteins during immune response are also investigated using public databases. We further highlight the novel perspectives and applications introduced by immunity-related selective autophagy studies, demonstrating its importance in research.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autofagossomos/metabolismo , Autofagia , Proteínas de Transporte/metabolismo , Imunidade Vegetal , Plantas/genética , Plantas/metabolismo , Proteínas/metabolismo
9.
FEBS Lett ; 596(17): 2305-2313, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35593306

RESUMO

Autophagy fulfills a crucial role in plant cellular homeostasis by recycling diverse cellular components ranging from protein complexes to whole organelles. Autophagy cargos are shuttled to the vacuole for degradation, thereby completing the recycling process. Canonical autophagy requires the lipidation and insertion of ATG8 proteins into double-membrane structures, termed autophagosomes, which engulf the cargo to be degraded. As such, the autophagy pathway actively contributes to intracellular membrane trafficking. Yet, the autophagic process is not fully considered a bona fide component of the canonical membrane trafficking pathway. However, recent findings have started to pinpoint the interconnection between classical membrane trafficking pathways and autophagy. This review details the latest advances in our comprehension of the interplay between these two pathways. Understanding the overlap between autophagy and canonical membrane trafficking pathways is important to illuminate the inner workings of both pathways in plant cells.


Assuntos
Autofagossomos , Autofagia , Autofagossomos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Plantas/genética , Vacúolos/metabolismo
10.
Plant Cell ; 34(5): 1684-1708, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35134217

RESUMO

As a critical part of plant immunity, cells that are attacked by pathogens undergo rapid transcriptional reprogramming to minimize virulence. Many bacterial phytopathogens use type III effector (T3E) proteins to interfere with plant defense responses, including this transcriptional reprogramming. Here, we show that Xanthomonas outer protein S (XopS), a T3E of Xanthomonas campestris pv. vesicatoria (Xcv), interacts with and inhibits proteasomal degradation of WRKY40, a transcriptional regulator of defense gene expression. Virus-induced gene silencing of WRKY40 in pepper (Capsicum annuum) enhanced plant tolerance to Xcv infection, indicating that WRKY40 represses immunity. Stabilization of WRKY40 by XopS reduces the expression of its targets, which include salicylic acid-responsive genes and the jasmonic acid signaling repressor JAZ8. Xcv bacteria lacking XopS display significantly reduced virulence when surface inoculated onto susceptible pepper leaves. XopS delivery by Xcv, as well as ectopic expression of XopS in Arabidopsis thaliana or Nicotiana benthamiana, prevented stomatal closure in response to bacteria and biotic elicitors. Silencing WRKY40 in pepper or N. benthamiana abolished XopS's ability to prevent stomatal closure. This suggests that XopS interferes with both preinvasion and apoplastic defense by manipulating WRKY40 stability and downstream gene expression, eventually altering phytohormone crosstalk to promote pathogen proliferation.


Assuntos
Arabidopsis , Capsicum , Xanthomonas campestris , Xanthomonas , Arabidopsis/metabolismo , Capsicum/genética , Capsicum/metabolismo , Capsicum/microbiologia , Morte Celular/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína S/genética , Proteína S/metabolismo , Xanthomonas campestris/metabolismo
12.
Trends Microbiol ; 28(7): 523-535, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32544439

RESUMO

In the evolutionary arms race between pathogens and plants, pathogens evolved effector molecules that they secrete into the host to subvert plant cellular responses in a process termed the effector-targeted pathway (ETP). During recent years the repertoire of ETPs has increased and mounting evidence indicates that the proteasome and autophagy pathways are central hubs of microbial effectors. Both degradation pathways are implicated in a broad array of cellular responses and thus constitute an attractive target for effector proteins to have a broader impact on the host. In this article we first summarize recent findings on how effectors from various pathogens modulate proteolytic pathways and then provide a network analysis of established effector targets implicated in proteolytic degradation machineries. With this network we emphasize the idea that effectors targeting proteolytic degradation pathways will affect the protein synthesis-transport and degradation triangle. We put in perspective that, in utilizing the effector diversity of microbes, we produce excellent tools to study diverse cellular pathways and their possible interplay with each other.


Assuntos
Autofagia/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Plantas/microbiologia , Transporte Proteico/fisiologia , Proteólise , Peptídeo Hidrolases/metabolismo , Doenças das Plantas/microbiologia
13.
Mol Plant Microbe Interact ; 32(9): 1229-1242, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31012804

RESUMO

The plasma membrane (PM) is at the interface of plant-pathogen interactions and, thus, many bacterial type-III effector (T3E) proteins target membrane-associated processes to interfere with immunity. The Pseudomonas syringae T3E HopZ1a is a host cell PM-localized effector protein that has several immunity-associated host targets but also activates effector-triggered immunity in resistant backgrounds. Although HopZ1a has been shown to interfere with early defense signaling at the PM, no dedicated PM-associated HopZ1a target protein has been identified until now. Here, we show that HopZ1a interacts with the PM-associated remorin protein NbREM4 from Nicotiana benthamiana in several independent assays. NbREM4 relocalizes to membrane nanodomains after treatment with the bacterial elicitor flg22 and transient overexpression of NbREM4 in N. benthamiana induces the expression of a subset of defense-related genes. We can further show that NbREM4 interacts with the immune-related receptor-like cytoplasmic kinase avrPphB-susceptible 1 (PBS1) and is phosphorylated by PBS1 on several residues in vitro. Thus, we conclude that NbREM4 is associated with early defense signaling at the PM. The possible relevance of the HopZ1a-NbREM4 interaction for HopZ1a virulence and avirulence functions is discussed.Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Bactérias , Proteínas de Transporte , Interações Hospedeiro-Patógeno , Fosfoproteínas , Proteínas de Plantas , Proteínas Serina-Treonina Quinases , Pseudomonas syringae , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas syringae/metabolismo , Nicotiana/enzimologia , Nicotiana/microbiologia
14.
Autophagy ; 14(8): 1465-1466, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30033807

RESUMO

Macroautophagy/autophagy and the ubiquitin-proteasome system (UPS) are major proteolytic pathways that are increasingly recognized as battlegrounds during host-microbe interactions in eukaryotes. In plants, the UPS has emerged as central component of innate immunity and is manipulated by bacterial pathogens to enhance virulence. Autophagy has been ascribed a similar importance for anti-bacterial immunity in animals, but the contribution of autophagy to host-bacteria interactions remained elusive in plants. Here, we present and discuss our recent findings that revealed anti- and pro-bacterial roles of autophagy pathways during bacterial infection in the model plant Arabidopsis thaliana. We discovered that selective autophagy mediated by the autophagy cargo receptor AT4G24690/NBR1 limits growth of Pseudomonas syringae pv. tomato DC3000 (Pst) by suppressing the establishment of an aqueous extracellular space ('water-soaking'). In turn, Pseudomonas employs the effector protein HopM1 to activate autophagy and proteasome degradation ('proteaphagy'), thereby enhancing its pathogenicity. Thus, our study demonstrates that distinct selective autophagy pathways contribute to host immunity and bacterial pathogenesis during Pst infection and provide evidence for an intimate crosstalk between the proteasome and autophagy system in plant-bacterial interactions.


Assuntos
Autofagia , Doenças das Plantas , Complexo de Endopeptidases do Proteassoma , Pseudomonas syringae , Virulência
15.
Plant Cell ; 30(3): 668-685, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29500318

RESUMO

Autophagy and the ubiquitin-proteasome system (UPS) are two major protein degradation pathways implicated in the response to microbial infections in eukaryotes. In animals, the contribution of autophagy and the UPS to antibacterial immunity is well documented and several bacteria have evolved measures to target and exploit these systems to the benefit of infection. In plants, the UPS has been established as a hub for immune responses and is targeted by bacteria to enhance virulence. However, the role of autophagy during plant-bacterial interactions is less understood. Here, we have identified both pro- and antibacterial functions of autophagy mechanisms upon infection of Arabidopsis thaliana with virulent Pseudomonas syringae pv tomato DC3000 (Pst). We show that Pst activates autophagy in a type III effector (T3E)-dependent manner and stimulates the autophagic removal of proteasomes (proteaphagy) to support bacterial proliferation. We further identify the T3E Hrp outer protein M1 (HopM1) as a principle mediator of autophagy-inducing activities during infection. In contrast to the probacterial effects of Pst-induced proteaphagy, NEIGHBOR OF BRCA1-dependent selective autophagy counteracts disease progression and limits the formation of HopM1-mediated water-soaked lesions. Together, we demonstrate that distinct autophagy pathways contribute to host immunity and bacterial pathogenesis during Pst infection and provide evidence for an intimate crosstalk between proteasome and autophagy in plant-bacterial interactions.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Autofagia/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Pseudomonas syringae/patogenicidade , Virulência
16.
Plant Physiol ; 176(1): 649-662, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29133371

RESUMO

Autophagy is a conserved intracellular degradation pathway and has emerged as a key mechanism of antiviral immunity in metazoans, including the selective elimination of viral components. In turn, some animal viruses are able to escape and modulate autophagy for enhanced pathogenicity. Whether host autophagic responses and viral countermeasures play similar roles in plant-virus interactions is not well understood. Here, we have identified selective autophagy as antiviral pathway during plant infection with turnip mosaic virus (TuMV), a positive-stranded RNA potyvirus. We show that the autophagy cargo receptor NBR1 suppresses viral accumulation by targeting the viral RNA silencing suppressor helper-component proteinase (HCpro), presumably in association with virus-induced RNA granules. Intriguingly, TuMV seems to antagonize NBR1-dependent autophagy during infection by the activity of distinct viral proteins, thereby limiting its antiviral capacity. We also found that NBR1-independent bulk autophagy prevents premature plant death, thus extending the lifespan of virus reservoirs and particle production. Together, our study highlights a conserved role of selective autophagy in antiviral immunity and suggests the evolvement of viral protein functions to inhibit autophagy processes, despite a potential trade-off in host survival.


Assuntos
Autofagia , Potyvirus/metabolismo , Interferência de RNA , Proteínas Virais/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Arabidopsis/metabolismo , Modelos Biológicos , Doenças das Plantas/virologia , Proteólise , Ubiquitina/metabolismo
17.
Curr Opin Plant Biol ; 40: 122-130, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28946008

RESUMO

Autophagy is a major pathway for degradation and recycling of cytoplasmic material, including individual proteins, aggregates, and entire organelles. Autophagic processes serve mainly survival functions in cellular homeostasis, stress adaptation and immune responses but can also have death-promoting activities in different eukaryotic organisms. In plants, the role of autophagy in the regulation of programmed cell death (PCD) remained elusive and a subject of debate. More recent evidence, however, has resulted in the consensus that autophagy can either promote or restrict different forms of PCD. Here, we present latest advances in understanding the molecular mechanisms and functions of plant autophagy and discuss their implications for life and death decisions in the context of developmental and pathogen-induced PCD.


Assuntos
Apoptose , Autofagia , Fenômenos Fisiológicos Vegetais , Desenvolvimento Vegetal , Plantas/microbiologia
18.
Front Plant Sci ; 8: 661, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28491076

RESUMO

Endophytic plant growth-promoting bacteria have significant impact on the plant physiology and understanding this interaction at the molecular level is of particular interest to support crop productivity and sustainable production systems. We used a proteomics approach to investigate the molecular mechanisms underlying plant growth promotion in the interaction of Kosakonia radicincitans DSM 16656 with Arabidopsis thaliana. Four weeks after the inoculation, the proteome of roots from inoculated and control plants was compared using two-dimensional gel electrophoresis and differentially abundant protein spots were identified by liquid chromatography tandem mass spectrometry. Twelve protein spots were responsive to the inoculation, with the majority of them being related to cellular stress reactions. The protein expression of 20S proteasome alpha-3 subunit was increased by the presence of K. radicincitans. Determination of proteasome activity and immuno blotting analysis for ubiquitinated proteins revealed that endophytic colonization interferes with ubiquitin-dependent protein degradation. Inoculation of rpn12a, defective in a 26S proteasome regulatory particle, enhanced the growth-promoting effect. This indicates that the plant proteasome, besides being a known target for plant pathogenic bacteria, is involved in the establishment of beneficial interactions of microorganisms with plants.

19.
Bio Protoc ; 7(17): e2532, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34541188

RESUMO

The fine-tuned balance of protein level, conformation and location within the cell is vital for the dynamic changes required for a cell to respond to a given stimulus. This requires the regulated turnover of damaged or short-lived proteins through the ubiquitin proteasome system (UPS). Thus, the protease activity of the proteasome is adjusted to meet the current demands of protein degradation via the UPS within the cell. We describe the adaptation of an intramolecular quenched fluorescence assay utilizing substrate-mimic peptides for the measurement of proteasome activity in total plant extracts. The peptide substrates contain donor-quencher pairs that flank the scissile bond. Following cleavage, the increase in dequenched donor emission of the product is subsequently measured over time and used to calculate the relative proteasome activity.

20.
Plant Physiol ; 172(3): 1941-1958, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27613851

RESUMO

Recent evidence suggests that the ubiquitin-proteasome system is involved in several aspects of plant immunity and that a range of plant pathogens subvert the ubiquitin-proteasome system to enhance their virulence. Here, we show that proteasome activity is strongly induced during basal defense in Arabidopsis (Arabidopsis thaliana). Mutant lines of the proteasome subunits RPT2a and RPN12a support increased bacterial growth of virulent Pseudomonas syringae pv tomato DC3000 (Pst) and Pseudomonas syringae pv maculicola ES4326. Both proteasome subunits are required for pathogen-associated molecular pattern-triggered immunity responses. Analysis of bacterial growth after a secondary infection of systemic leaves revealed that the establishment of systemic acquired resistance (SAR) is impaired in proteasome mutants, suggesting that the proteasome also plays an important role in defense priming and SAR In addition, we show that Pst inhibits proteasome activity in a type III secretion-dependent manner. A screen for type III effector proteins from Pst for their ability to interfere with proteasome activity revealed HopM1, HopAO1, HopA1, and HopG1 as putative proteasome inhibitors. Biochemical characterization of HopM1 by mass spectrometry indicates that HopM1 interacts with several E3 ubiquitin ligases and proteasome subunits. This supports the hypothesis that HopM1 associates with the proteasome, leading to its inhibition. Thus, the proteasome is an essential component of pathogen-associated molecular pattern-triggered immunity and SAR, which is targeted by multiple bacterial effectors.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/microbiologia , Sistemas de Secreção Bacterianos , Imunidade Vegetal , Complexo de Endopeptidases do Proteassoma/metabolismo , Pseudomonas syringae/metabolismo , Proteínas de Arabidopsis/metabolismo , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Mutação/genética , Moléculas com Motivos Associados a Patógenos/metabolismo , Doenças das Plantas/microbiologia , Subunidades Proteicas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...