Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36005713

RESUMO

The complexity of removing boron compounds from aqueous systems has received serious attention among researchers and inventors in the water treating industry. This is due to the higher level of boron in the aquatic ecosystem, which is caused by the geochemical background and anthropogenic factors. The gradual increase in the distribution of boron for years can become extremely toxic to humans, terrestrial organisms and aquatic organisms. Numerous methods of removing boron that have been executed so far can be classified under batch adsorption, membrane-based processes and hybrid techniques. Conventional water treatments such as coagulation, sedimentation and filtration do not significantly remove boron, and special methods would have to be installed in order to remove boron from water resources. The blockage of membrane pores by pollutants in the available membrane technologies not only decreases their performance but can make the membranes prone to fouling. Therefore, the surface-modifying flexibility in adsorptive membranes can serve as an advantage to remove boron from water resources efficiently. These membranes are attractive because of the dual advantage of adsorption/filtration mechanisms. Hence, this review is devoted to discussing the capabilities of an adsorptive membrane in removing boron. This study will mainly highlight the issues of commercially available adsorptive membranes and the drawbacks of adsorbents incorporated in single-layered adsorptive membranes. The idea of layering adsorbents to form a highly adsorptive dual-layered membrane for boron removal will be proposed. The future prospects of boron removal in terms of the progress and utilization of adsorptive membranes along with recommendations for improving the techniques will also be discussed further.

2.
Sep Purif Technol ; 286: 120454, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35035270

RESUMO

Consumption of pathogenic contaminated water has claimed the lives of many people. Hence, this scenario has emphasized the urgent need for research methods to avoid, treat and eliminate harmful pathogens in wastewater. Therefore, effective water treatment has become a matter of utmost importance. Membrane technology offers purer, cleaner, and pathogen-free water through the water separation method via a permeable membrane. Advanced membrane technology such as nanocomposite membrane, membrane distillation, membrane bioreactor, and photocatalytic membrane reactor can offer synergistic effects in removing pathogen through the integration of additional functionality and filtration in a single chamber. This paper also comprehensively discussed the application, challenges, and future perspective of the advanced membrane technology as a promising alternative in battling pathogenic microbial contaminants, which will also be beneficial and valuable in managing pandemics in the future as well as protecting human health and the environment. In addition, the potential of membrane technology in battling the ongoing global pandemic of coronavirus disease 2019 (COVID-19) was also discussed briefly.

3.
Membranes (Basel) ; 11(8)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34436363

RESUMO

Hollow fiber membrane (HFM) technology has received significant attention due to its broad range separation and purification applications in the industry. In the current study, we applied bibliometric analysis to evaluate the global research trends on key applications of HFMs by evaluating the global publication outputs. Results obtained from 5626 published articles (1970-2020) from the Scopus database were further manipulated using VOSviewer software through cartography analysis. The study emphasizes the performance of most influential annual publications covering mainstream journals, leading countries, institutions, leading authors and author's keywords, as well as future research trends. The study found that 62% of the global HFM publications were contributed by China, USA, Singapore, Japan and Malaysia, followed by 77 other countries. This study will stimulate the researchers by showing the future-minded research directions when they select new research areas, particularly in those related to water treatment, biomedical and gas separation applications of HFM.

4.
Membranes (Basel) ; 10(4)2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260422

RESUMO

Natural zeolite is widely used in removing ammonia via adsorption process because of its superior ion-exchange properties. Ceramic particle size affects the adsorptivity of particles toward ammonia. In this study, hollow fiber ceramic membrane (HFCM) was fabricated from natural zeolite via phase inversion. The effect of natural zeolite particle size toward the properties and performance of HFCM was evaluated. The results show that the HFCM with smaller particle sizes exhibited a more compact morphological structure with better mechanical strength. The adsorption performance of HFCM was significantly improved with smaller particle sizes because of longer residence time, as proven by the lower water permeability. A high adsorption performance of 96.67% was achieved for HFCM with the smallest particle size (36 µm). These findings provide a new perspective on the promising properties of the natural zeolite-derived HFCM for ammonia removal.

5.
Membranes (Basel) ; 10(2)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098156

RESUMO

The presence of bisphenol A (BPA) in various water sources has potentially led to numerous adverse effects in human such as increased in blood pressure and derangement in liver function. Thus, a reliable treatment for the removing BPA is highly required. This present work aimed to study the efficiency of visible light driven photocatalytic dual-layer hollow fiber (DLHF) membrane for the removal of BPA from water and further investigated its detrimental effects by using an in-vivo model. The prepared membranes were characterized for their morphology, particles distribution, surface roughness, crystallinity and light absorption spectra. The removal of 81.6% and 86.7% in BPA concentration was achieved for N-doped TiO2 DLHF after 360 min of visible and UV light irradiation, respectively. No significant changes for all three groups were observed in liver function test meanwhile the rats-exposed to untreated BPA water shows significance blood pressure increment contrary to rats-exposed to treated BPA water. Similarly, the normal morphology in both jejunum and ileum were altered in rats-exposed to untreated BPA water group. Altogether, the presence of N-doped TiO2 in DLHF are shown to significantly enhance the photocatalytic degradation activity under visible irradiation, which effectively mitigates the effect of BPA in an in-vivo model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...