Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 157: 8-14, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26816109

RESUMO

Efficient catalysis of the oxygen reduction reaction (ORR) is of central importance to function in fuel cells. Metalloproteins, such as laccase (Cu) or cytochrome c oxidase (Cu/Fe-heme) carry out the 4H(+)/4e(-) reduction quite efficiently, but using large, complex protein frameworks. Smaller heme proteins also can carry out ORR, but less efficiently. To gain greater insight into features that promote efficient ORR, we expressed, characterized, and investigated the electrochemical behavior of six new mutants of cytochrome c552 from Thermus thermophilus: V49S/M69A, V49T/M69A, L29D/V49S/M69A, P27A/P28A/L29D/V49S/M69A, and P27A/P28A/L29D/V49T/M69A. Mutation to V49 causes only minor shifts to Fe(III/II) reduction potentials (E°'), but introduction of Ser provides a hydrogen bond donor that slightly enhances oxygen reduction activity. Mutation of L29 to D induces small shifts in heme optical spectra, but not to E°' (within experimental error). Replacement of P27 and P28 with A in both positions induces a -50 mV shift in E°', again with small changes to the optical spectra. Both the optical spectra and reduction potentials have signatures consistent with peroxidase enzymes. The V49S and V49T mutations have the largest impact of ORR catalysis, suggesting that increased electron density at the Fe site does not improve O2 reduction chemistry.


Assuntos
Grupo dos Citocromos c/metabolismo , Oxigênio/química , Thermus thermophilus/enzimologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Catálise
2.
Chemistry ; 21(50): 18072-5, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26459272

RESUMO

Oxygen reduction in acidic aqueous solution mediated by a series of asymmetric iron (III)-tetra(aryl)porphyrins adsorbed to basal- and edge- plane graphite electrodes is investigated. The asymmetric iron porphyrin systems bear phenyl groups at three meso positions and either a 2-pyridyl, a 2-benzoic acid, or a 2-hydroxyphenyl group at the remaining meso position. The presence of the three unmodified phenyl groups makes the compounds insoluble in water, enabling catalyst retention during electrochemical experiments. Resonance Raman data demonstrate that catalyst layers are maintained, but can undergo modification after prolonged catalysis in the presence of O2 . The introduction of a single proton relay group at the fourth meso position makes the asymmetric iron porphyrins markedly more robust catalysts; these molecules support higher sustained current densities than the parent iron tetraphenylporphyrin. Iron porphyrins bearing a 2-pyridyl group are the most active catalysts and operate at stable current densities ≥1 mA cm(-2) for over 5 h. Comparative analysis of the catalysts with different proton relays also is reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...