Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2787: 39-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656480

RESUMO

The study of natural variations in photosynthesis in the Brassicaceae family offers the possibility of identifying mechanisms to enhance photosynthetic efficiency in crop plants. Indeed, this family, and particularly its tribe Brassiceae, has been shown to harbor species that have a higher-than-expected photosynthetic efficiency, possibly as a result of a complex evolutionary history. Over the past two decades, methods have been developed to measure photosynthetic efficiency based on chlorophyll fluorescence. Chlorophyll fluorescence measurements are performed with special cameras, such as the FluorCams, which can be included in robotic systems to create high-throughput phenotyping platforms. While these platforms have so far demonstrated high efficiency in measuring small model species like Arabidopsis thaliana, they have the drawback of limited adaptability to accommodate different plant sizes. As a result, the range of species that can be analyzed is restricted. This chapter presents our approach to analyze the photosynthetic parameters: ϕPSII and Fv/Fm for a panel of Brassicaceae species, including a high-photosynthesis species, Hirschfeldia incana, and the adaptations to the phenotyping platform that are required to accommodate this varied group of plants.


Assuntos
Brassicaceae , Clorofila , Fotossíntese , Brassicaceae/fisiologia , Brassicaceae/metabolismo , Brassicaceae/genética , Clorofila/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Fenótipo , Fluorescência
2.
Mol Plant Pathol ; 25(3): e13436, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460112

RESUMO

While the response of Arabidopsis thaliana to drought, herbivory or fungal infection has been well-examined, the consequences of exposure to a series of such (a)biotic stresses are not well studied. This work reports on the genetic mechanisms underlying the Arabidopsis response to single osmotic stress, and to combinatorial stress, either fungal infection using Botrytis cinerea or herbivory using Pieris rapae caterpillars followed by an osmotic stress treatment. Several small-effect genetic loci associated with rosette dry weight (DW), rosette water content (WC), and the projected rosette leaf area in response to combinatorial stress were mapped using univariate and multi-environment genome-wide association approaches. A single-nucleotide polymorphism (SNP) associated with DROUGHT-INDUCED 19 (DI19) was identified by both approaches, supporting its potential involvement in the response to combinatorial stress. Several SNPs were found to be in linkage disequilibrium with known stress-responsive genes such as PEROXIDASE 34 (PRX34), BASIC LEUCINE ZIPPER 25 (bZIP25), RESISTANCE METHYLATED GENE 1 (RMG1) and WHITE RUST RESISTANCE 4 (WRR4). An antagonistic effect between biotic and osmotic stress was found for prx34 and arf4 mutants, which suggests PRX34 and ARF4 play an important role in the response to the combinatorial stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Micoses , Estudo de Associação Genômica Ampla , Arabidopsis/microbiologia , Pressão Osmótica , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Proteínas de Arabidopsis/genética
3.
Plant Methods ; 20(1): 11, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233879

RESUMO

BACKGROUND: The study of plant photosynthesis is essential for productivity and yield. Thanks to the development of high-throughput phenotyping (HTP) facilities, based on chlorophyll fluorescence imaging, photosynthetic traits can be measured in a reliable, reproducible and efficient manner. In most state-of-the-art HTP platforms, these traits are automatedly analyzed at individual plant level, but information at leaf level is often restricted by the use of manual annotation. Automated leaf tracking over time is therefore highly desired. Methods for tracking individual leaves are still uncommon, convoluted, or require large datasets. Hence, applications and libraries with different techniques are required. New phenotyping platforms are initiated now more frequently than ever; however, the application of advanced computer vision techniques, such as convolutional neural networks, is still growing at a slow pace. Here, we provide a method for leaf segmentation and tracking through the fine-tuning of Mask R-CNN and intersection over union as a solution for leaf tracking on top-down images of plants. We also provide datasets and code for training and testing on both detection and tracking of individual leaves, aiming to stimulate the community to expand the current methodologies on this topic. RESULTS: We tested the results for detection and segmentation on 523 Arabidopsis thaliana leaves at three different stages of development from which we obtained a mean F-score of 0.956 on detection and 0.844 on segmentation overlap through the intersection over union (IoU). On the tracking side, we tested nine different plants with 191 leaves. A total of 161 leaves were tracked without issues, accounting to a total of 84.29% correct tracking, and a Higher Order Tracking Accuracy (HOTA) of 0.846. In our case study, leaf age and leaf order influenced photosynthetic capacity and photosynthetic response to light treatments. Leaf-dependent photosynthesis varies according to the genetic background. CONCLUSION: The method provided is robust for leaf tracking on top-down images. Although one of the strong components of the method is the low requirement in training data to achieve a good base result (based on fine-tuning), most of the tracking issues found could be solved by expanding the training dataset for the Mask R-CNN model.

4.
J Exp Bot ; 74(15): 4384-4400, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37179467

RESUMO

In plant cells, a large pool of iron (Fe) is contained in the nucleolus, as well as in chloroplasts and mitochondria. A central determinant for intracellular distribution of Fe is nicotianamine (NA) generated by NICOTIANAMINE SYNTHASE (NAS). Here, we used Arabidopsis thaliana plants with disrupted NAS genes to study the accumulation of nucleolar iron and understand its role in nucleolar functions and more specifically in rRNA gene expression. We found that nas124 triple mutant plants, which contained lower quantities of the iron ligand NA, also contained less iron in the nucleolus. This was concurrent with the expression of normally silenced rRNA genes from nucleolar organizer regions 2 (NOR2). Notably, in nas234 triple mutant plants, which also contained lower quantities of NA, nucleolar iron and rDNA expression were not affected. In contrast, in both nas124 and nas234, specific RNA modifications were differentially regulated in a genotype dependent manner. Taken together, our results highlight the impact of specific NAS activities in RNA gene expression. We discuss the interplay between NA and nucleolar iron with rDNA functional organization and RNA methylation.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , DNA Ribossômico/metabolismo , Metilação , Ferro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
5.
Plant J ; 113(2): 225-245, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36433704

RESUMO

In nature, multiple stress factors occur simultaneously. The screening of natural diversity panels and subsequent Genome-Wide Association Studies (GWAS) is a powerful approach to identify genetic components of various stress responses. Here, the nutritional status variation of a set of 270 natural accessions of Arabidopsis thaliana grown on a natural saline-carbonated soil is evaluated. We report significant natural variation on leaf Na (LNa) and Fe (LFe) concentrations in the studied accessions. Allelic variation in the NINJA and YUC8 genes is associated with LNa diversity, and variation in the ALA3 is associated with LFe diversity. The allelic variation detected in these three genes leads to changes in their mRNA expression and correlates with plant differential growth performance when plants are exposed to alkaline salinity treatment under hydroponic conditions. We propose that YUC8 and NINJA expression patters regulate auxin and jasmonic signaling pathways affecting plant tolerance to alkaline salinity. Finally, we describe an impairment in growth and leaf Fe acquisition associated with differences in root expression of ALA3, encoding a phospholipid translocase active in plasma membrane and the trans Golgi network which directly interacts with proteins essential for the trafficking of PIN auxin transporters, reinforcing the role of phytohormonal processes in regulating ion homeostasis under alkaline salinity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla , Homeostase , Ácidos Indolacéticos/metabolismo , Salinidade , Estresse Salino/genética , Sódio/metabolismo , Folhas de Planta
6.
Planta ; 257(1): 2, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36416988

RESUMO

MAIN CONCLUSION: Micro-analytical techniques to untangle Se distribution and chemical speciation in plants coupled with molecular biology analysis enable the deciphering of metabolic pathways responsible for Se tolerance and accumulation. Selenium (Se) is not essential for plants and is toxic at high concentrations. However, Se hyperaccumulator plants have evolved strategies to both tolerate and accumulate > 1000 µg Se g-1 DW in their living above-ground tissues. Given the complexity of the biochemistry of Se, various approaches have been adopted to study Se metabolism in plants. These include X-ray-based techniques for assessing distribution and chemical speciation of Se, and molecular biology techniques to identify genes implicated in Se uptake, transport, and assimilation. This review presents these techniques, synthesises the current state of knowledge on Se metabolism in plants, and highlights future directions for research into Se (hyper)accumulation and tolerance. We conclude that powerful insights may be gained from coupling information on the distribution and chemical speciation of Se to genome-scale studies to identify gene functions and molecular mechanisms that underpin Se tolerance and accumulation in these ecologically and biotechnologically important plants species. The study of Se metabolism is challenging and is a useful testbed for developing novel analytical approaches that are potentially more widely applicable to the study of the regulation of a wide range of metal(loid)s in hyperaccumulator plants.


Assuntos
Selênio , Plantas/genética , Plantas/metabolismo , Biologia Molecular , Transporte Biológico
7.
Plant J ; 112(5): 1298-1315, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36239071

RESUMO

Photosynthesis is a key process in sustaining plant and human life. Improving the photosynthetic capacity of agricultural crops is an attractive means to increase their yields. While the core mechanisms of photosynthesis are highly conserved in C3 plants, these mechanisms are very flexible, allowing considerable diversity in photosynthetic properties. Among this diversity is the maintenance of high photosynthetic light-use efficiency at high irradiance as identified in a small number of exceptional C3 species. Hirschfeldia incana, a member of the Brassicaceae family, is such an exceptional species, and because it is easy to grow, it is an excellent model for studying the genetic and physiological basis of this trait. Here, we present a reference genome of H. incana and confirm its high photosynthetic light-use efficiency. While H. incana has the highest photosynthetic rates found so far in the Brassicaceae, the light-saturated assimilation rates of closely related Brassica rapa and Brassica nigra are also high. The H. incana genome has extensively diversified from that of B. rapa and B. nigra through large chromosomal rearrangements, species-specific transposon activity, and differential retention of duplicated genes. Duplicated genes in H. incana, B. rapa, and B. nigra that are involved in photosynthesis and/or photoprotection show a positive correlation between copy number and gene expression, providing leads into the mechanisms underlying the high photosynthetic efficiency of these species. Our work demonstrates that the H. incana genome serves as a valuable resource for studying the evolution of high photosynthetic light-use efficiency and enhancing photosynthetic rates in crop species.


Assuntos
Brassica rapa , Brassicaceae , Humanos , Brassicaceae/metabolismo , Fotossíntese/genética , Produtos Agrícolas , Fenótipo
8.
BMC Plant Biol ; 22(1): 360, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869423

RESUMO

BACKGROUND: Metals such as Zn or Cd are toxic to plant and humans when they are exposed in high quantities through contaminated soil or food. Noccaea caerulescens, an extraordinary Zn/Cd/Ni hyperaccumulating species, is used as a model plant for metal hyperaccumulation and phytoremediation studies. Current reverse genetic techniques to generate mutants based on transgenesis is cumbersome due to the low transformation efficiency of this species. We aimed to establish a mutant library for functional genomics by a non-transgenic approach, to identify mutants with an altered mineral profiling, and to screen for mutations in bZIP19, a regulator of Zn homeostasis in N. caerulescens. RESULTS: To generate the N. caerulescens mutant library, 3000 and 5000 seeds from two sister plants of a single-seed recurrent inbred descendant of the southern French accession Saint-Félix-de-Pallières (SF) were mutagenized respectively by 0.3 or 0.4% ethyl methane sulfonate (EMS). Two subpopulations of 5000 and 7000 M2 plants were obtained after 0.3 or 0.4% EMS treatment. The 0.4% EMS treatment population had a higher mutant frequency and was used for TILLING. A High Resolution Melting curve analysis (HRM) mutation screening platform was optimized and successfully applied to detect mutations for NcbZIP19, encoding a transcription factor controlling Zn homeostasis. Of four identified point mutations in NcbZIP19, two caused non-synonymous substitutions, however, these two mutations did not alter the ionome profile compared to the wild type. Forward screening of the 0.4% EMS treatment population by mineral concentration analysis (ionomics) in leaf material of each M2 plant revealed putative mutants affected in the concentration of one or more of the 20 trace elements tested. Several of the low-Zn mutants identified in the ionomic screen did not give progeny, illustrating the importance of Zn for the species. The mutant frequency of the population was evaluated based on an average of 2.3 knockout mutants per tested monogenic locus. CONCLUSIONS: The 0.4% EMS treatment population is effectively mutagenized suitable for forward mutant screens and TILLING. Difficulties in seed production in low Zn mutants, obtained by both forward and reverse genetic approach, hampered further analysis of the nature of the low Zn phenotypes.


Assuntos
Brassicaceae , Cádmio , Biodegradação Ambiental , Brassicaceae/genética , Metanossulfonato de Etila , Humanos , Metais , Zinco
9.
Metallomics ; 14(5)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35746898

RESUMO

The molecular biology and genetics of the Ni-Cd-Zn hyperaccumulator Noccaea caerulescens has been extensively studied, but no information is yet available on Ni and Zn redistribution and mobilization during seed germination. Due to the different physiological functions of these elements, and their associated transporter pathways, we expected differential tissue distribution and different modes of translocation of Ni and Zn during germination. This study used synchrotron X-ray fluorescence tomography techniques as well as planar elemental X-ray imaging to elucidate elemental (re)distribution at various stages of the germination process in contrasting accessions of N. caerulescens. The results show that Ni and Zn are both located primarily in the cotyledons of the emerging seedlings and Ni is highest in the ultramafic accessions (up to 0.15 wt%), whereas Zn is highest in the calamine accession (up to 600 µg g-1). The distribution of Ni and Zn in seeds was very similar, and neither element was translocated during germination. The Fe maps were especially useful to obtain spatial reference within the seeds, as it clearly marked the vasculature. This study shows how a multimodal combination of synchrotron techniques can be used to obtain powerful insights about the metal distribution in physically intact seeds and seedlings.


Assuntos
Brassicaceae , Cádmio , Brassicaceae/metabolismo , Cádmio/metabolismo , Imagem Óptica , Plântula/metabolismo , Sementes/metabolismo , Síncrotrons , Raios X , Zinco/metabolismo
10.
J Exp Bot ; 73(10): 3122-3137, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35235648

RESUMO

Since the basic biochemical mechanisms of photosynthesis are remarkably conserved among plant species, genetic modification approaches have so far been the main route to improve the photosynthetic performance of crops. Yet, phenotypic variation observed in wild species and between varieties of crop species implies there is standing natural genetic variation for photosynthesis, offering a largely unexplored resource to use for breeding crops with improved photosynthesis and higher yields. The reason this has not yet been explored is that the variation probably involves thousands of genes, each contributing only a little to photosynthesis, making them hard to identify without proper phenotyping and genetic tools. This is changing, though, and increasingly studies report on quantitative trait loci for photosynthetic phenotypes. So far, hardly any of these quantitative trait loci have been used in marker assisted breeding or genomic selection approaches to improve crop photosynthesis and yield, and hardly ever have the underlying causal genes been identified. We propose to take the genetics of photosynthesis to a higher level, and identify the genes and alleles nature has used for millions of years to tune photosynthesis to be in line with local environmental conditions. We will need to determine the physiological function of the genes and alleles, and design novel strategies to use this knowledge to improve crop photosynthesis through conventional plant breeding, based on readily available crop plant germplasm. In this work, we present and discuss the genetic methods needed to reveal natural genetic variation, and elaborate on how to apply this to improve crop photosynthesis.


Assuntos
Melhoramento Vegetal , Locos de Características Quantitativas , Produtos Agrícolas/genética , Fenótipo , Fotossíntese/genética , Locos de Características Quantitativas/genética
11.
BMC Plant Biol ; 21(1): 437, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579652

RESUMO

BACKGROUND: Some subspecies of Dichapetalum gelonioides are the only tropical woody zinc (Zn)-hyperaccumulator plants described so far and the first Zn hyperaccumulators identified to occur exclusively on non-Zn enriched 'normal' soils. The aim of this study was to investigate Zn cycling in the parent rock-soil-plant interface in the native habitats of hyperaccumulating Dichapetalum gelonioides subspecies (subsp. pilosum and subsp. sumatranum). We measured the Zn isotope ratios (δ66Zn) of Dichapetalum plant material, and associated soil and parent rock materials collected from Sabah (Malaysian Borneo). RESULTS: We found enrichment in heavy Zn isotopes in the topsoil (δ66Zn 0.13 ‰) relative to deep soil (δ66Zn -0.15 ‰) and bedrock (δ66Zn -0.90 ‰). This finding suggests that both weathering and organic matter influenced the Zn isotope pattern in the soil-plant system, with leaf litter cycling contributing significantly to enriched heavier Zn in topsoil. Within the plant, the roots were enriched in heavy Zn isotopes (δ66Zn ~ 0.60 ‰) compared to mature leaves (δ66Zn ~ 0.30 ‰), which suggests highly expressed membrane transporters in these Dichapetalum subspecies preferentially transporting lighter Zn isotopes during root-to-shoot translocation. The shoots, mature leaves and phloem tissues were enriched in heavy Zn isotopes (δ66Zn 0.34-0.70 ‰) relative to young leaves (δ66Zn 0.25 ‰). Thisindicates that phloem sources are enriched in heavy Zn isotopes relative to phloem sinks, likely because of apoplastic retention and compartmentalization in the Dichapetalum subspecies. CONCLUSIONS: The findings of this study reveal Zn cycling in the rock-soil-plant continuum within the natural habitat of Zn hyperaccumulating subspecies of Dichapetalum gelonioides from Malaysian Borneo. This study broadens our understanding of the role of a tropical woody Zn hyperaccumulator plant in local Zn cycling, and highlights the important role of leaf litter recycling in the topsoil Zn budget. Within the plant, phloem plays key role in Zn accumulation and redistribution during growth and development. This study provides an improved understanding of the fate and behaviour of Zn in hyperaccumulator soil-plant systems, and these insights may be applied in the biofortification of crops with Zn.


Assuntos
Transporte Biológico/fisiologia , Malpighiaceae/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Solo/química , Isótopos de Zinco/metabolismo , Bornéu , Malpighiaceae/química , Folhas de Planta/química , Raízes de Plantas/química , Isótopos de Zinco/química
12.
Plant Methods ; 17(1): 86, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344412

RESUMO

BACKGROUND: Hyperaccumulation of trace elements is a rare trait among plants which is being investigated to advance our understanding of the regulation of metal accumulation and applications in phytotechnologies. Noccaea caerulescens (Brassicaceae) is an intensively studied hyperaccumulator model plant capable of attaining extremely high tissue concentrations of zinc and nickel with substantial genetic variation at the population-level. Micro-X-ray Fluorescence spectroscopy (µXRF) mapping is a sensitive high-resolution technique to obtain information of the spatial distribution of the plant metallome in hydrated samples. We used laboratory-based µXRF to characterize a collection of 86 genetically diverse Noccaea caerulescens accessions from across Europe. We developed an image-processing method to segment different plant substructures in the µXRF images. We introduced the concentration quotient (CQ) to quantify spatial patterns of metal accumulation and linked that to genetic variation. RESULTS: Image processing resulted in automated segmentation of µXRF plant images into petiole, leaf margin, leaf interveinal and leaf vasculature substructures. The harmonic means of recall and precision (F1 score) were 0.79, 0.80, 0.67, and 0.68, respectively. Spatial metal accumulation as determined by CQ is highly heritable in Noccaea caerulescens for all substructures, with broad-sense heritability (H2) ranging from 76 to 92%, and correlates only weakly with other heritable traits. Insertion of noise into the image segmentation algorithm barely decreases heritability scores of CQ for the segmented substructures, illustrating the robustness of the trait and the quantification method. Very low heritability was found for CQ if randomly generated substructures were compared, validating the approach. CONCLUSIONS: A strategy for segmenting µXRF images of Noccaea caerulescens is proposed and the concentration quotient is developed to provide a quantitative measure of metal accumulation pattern, which can be used to determine genetic variation for such pattern. The metric is robust to segmentation error and provides reliable H2 estimates. This strategy provides an avenue for quantifying XRF data for analysis of the genetics of metal distribution patterns in plants and the subsequent discovery of new genes that regulate metal homeostasis and sequestration in plants.

13.
Nat Plants ; 7(2): 137-143, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33594269

RESUMO

Zinc (Zn) is an essential micronutrient for plants and animals owing to its structural and catalytic roles in many proteins1. Zn deficiency affects around 2 billion people, mainly those who live on plant-based diets relying on crops from Zn-deficient soils2,3. Plants maintain adequate Zn levels through tightly regulated Zn homeostasis mechanisms involving Zn uptake, distribution and storage4, but evidence of how they sense Zn status is lacking. Here, we use in vitro and in planta approaches to show that the Arabidopsis thaliana F-group bZIP transcription factors bZIP19 and bZIP23, which are the central regulators of the Zn deficiency response, function as Zn sensors by binding Zn2+ ions to a Zn-sensor motif. Deletions or modifications of this Zn-sensor motif disrupt Zn binding, leading to a constitutive transcriptional Zn deficiency response, which causes a significant increase in plant and seed Zn accumulation. As the Zn-sensor motif is highly conserved in F-group bZIP proteins across land plants, the identification of this plant Zn sensor will promote new strategies to improve the Zn nutritional quality of plant-derived food and feed, and contribute to tackling the global Zn-deficiency health problem.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Zinco/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Front Plant Sci ; 11: 582577, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262778

RESUMO

The appropriate timing of flowering is crucial for plant reproductive success. Studies of the molecular mechanism of flower induction in the model plant Arabidopsis thaliana showed long days and vernalization as major environmental promotive factors. Noccaea caerulescens has an obligate vernalization requirement that has not been studied at the molecular genetics level. Here, we characterize the vernalization requirement and response of four geographically diverse biennial/perennial N. caerulescens accessions: Ganges (GA), Lellingen (LE), La Calamine (LC), and St. Felix de Pallières (SF). Differences in vernalization responsiveness among accessions suggest that natural variation for this trait exists within N. caerulescens. Mutants which fully abolish the vernalization requirement were identified and were shown to contain mutations in the FLOWERING LOCUS C (NcFLC) and SHORT VEGETATIVE PHASE (NcSVP) genes, two key floral repressors in this species. At high temperatures, the non-vernalization requiring flc-1 mutant reverts from flowering to vegetative growth, which is accompanied with a reduced expression of LFY and AP1. This suggested there is "crosstalk" between vernalization and ambient temperature, which might be a strategy to cope with fluctuations in temperature or adopt a more perennial flowering attitude and thus facilitate a flexible evolutionary response to the changing environment across the species range.

15.
Plant Cell Environ ; 43(8): 2000-2013, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32495939

RESUMO

Low, but non-freezing, temperatures have negative effects on plant growth and development. Despite some molecular signalling pathways being known, the mechanisms causing different responses among genotypes are still poorly understood. Photosynthesis is one of the processes that are affected by low temperatures. Using an automated phenotyping platform for chlorophyll fluorescence imaging the steady state quantum yield of photosystem II (PSII) electron transport (ΦPSII ) was measured and used to quantify the effect of moderately low temperature on a population of Arabidopsis thaliana natural accessions. Observations were made over the course of several weeks in standard and low temperature conditions and a strong decrease in ΦPSII upon the cold treatment was found. A genome wide association study identified several quantitative trait loci (QTLs) that are associated with changes in ΦPSII in low temperature. One candidate for a cold specific QTL was validated with a mutant analysis to be one of the genes that is likely involved in the PSII response to the cold treatment. The gene encodes the PSII associated protein PSB27 which has already been implicated in the adaptation to fluctuating light.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Variação Genética , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/genética , Locos de Características Quantitativas , Arabidopsis/genética , Estudo de Associação Genômica Ampla , Fotossíntese/genética , Temperatura
16.
J Exp Bot ; 71(12): 3664-3677, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32133499

RESUMO

The F-bZIP transcription factors bZIP19 and bZIP23 are the central regulators of the zinc deficiency response in Arabidopsis, and phylogenetic analysis of F-bZIP homologs across land plants indicates that the regulatory mechanism of the zinc deficiency response may be conserved. Here, we identified the rice F-bZIP homologs and investigated their function. OsbZIP48 and OsbZIP50, but not OsbZIP49, complement the zinc deficiency-hypersensitive Arabidopsis bzip19bzip23 double mutant. Ectopic expression of OsbZIP50 in Arabidopsis significantly increases plant zinc accumulation under control zinc supply, suggesting an altered Zn sensing in OsbZIP50. In addition, we performed a phylogenetic analysis of F-bZIP homologs from representative monocot species that supports the branching of plant F-bZIPs into Group 1 and Group 2. Our results suggest that regulation of the zinc deficiency response in rice is conserved, with OsbZIP48 being a functional homolog of AtbZIP19 and AtbZIP23. A better understanding of the mechanisms behind the Zn deficiency response in rice and other important crops will contribute to develop plant-based strategies to address the problems of Zn deficiency in soils, crops, and cereal-based human diets.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Oryza , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zinco/metabolismo
17.
Nat Plants ; 6(1): 13-21, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31932677

RESUMO

Assessment of the impact of variation in chloroplast and mitochondrial DNA (collectively termed the plasmotype) on plant phenotypes is challenging due to the difficulty in separating their effect from nuclear-derived variation (the nucleotype). Haploid-inducer lines can be used as efficient plasmotype donors to generate new plasmotype-nucleotype combinations (cybrids)1. We generated a panel comprising all possible cybrids of seven Arabidopsis thaliana accessions and extensively phenotyped these lines for 1,859 phenotypes under both stable and fluctuating conditions. We show that natural variation in the plasmotype results in both additive and epistatic effects across all phenotypic categories. Plasmotypes that induce more additive phenotypic changes also cause more epistatic effects, suggesting a possible common basis for both additive and epistatic effects. On average, epistatic interactions explained twice as much of the variance in phenotypes as additive plasmotype effects. The impact of plasmotypic variation was also more pronounced under fluctuating and stressful environmental conditions. Thus, the phenotypic impact of variation in plasmotypes is the outcome of multi-level nucleotype-plasmotype-environment interactions and, as such, the plasmotype is likely to serve as a reservoir of variation that is predominantly exposed under certain conditions. The production of cybrids using haploid inducers is a rapid and precise method for assessment of the phenotypic effects of natural variation in organellar genomes. It will facilitate efficient screening of unique nucleotype-plasmotype combinations to both improve our understanding of natural variation in these combinations and identify favourable combinations to enhance plant performance.


Assuntos
Arabidopsis/genética , Genoma de Planta , Organelas/genética , Fenótipo , Hibridização Genética
18.
Front Genet ; 11: 609117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552126

RESUMO

Prediction of growth-related complex traits is highly important for crop breeding. Photosynthesis efficiency and biomass are direct indicators of overall plant performance and therefore even minor improvements in these traits can result in significant breeding gains. Crop breeding for complex traits has been revolutionized by technological developments in genomics and phenomics. Capitalizing on the growing availability of genomics data, genome-wide marker-based prediction models allow for efficient selection of the best parents for the next generation without the need for phenotypic information. Until now such models mostly predict the phenotype directly from the genotype and fail to make use of relevant biological knowledge. It is an open question to what extent the use of such biological knowledge is beneficial for improving genomic prediction accuracy and reliability. In this study, we explored the use of publicly available biological information for genomic prediction of photosynthetic light use efficiency (Φ PSII ) and projected leaf area (PLA) in Arabidopsis thaliana. To explore the use of various types of knowledge, we mapped genomic polymorphisms to Gene Ontology (GO) terms and transcriptomics-based gene clusters, and applied these in a Genomic Feature Best Linear Unbiased Predictor (GFBLUP) model, which is an extension to the traditional Genomic BLUP (GBLUP) benchmark. Our results suggest that incorporation of prior biological knowledge can improve genomic prediction accuracy for both Φ PSII and PLA. The improvement achieved depends on the trait, type of knowledge and trait heritability. Moreover, transcriptomics offers complementary evidence to the Gene Ontology for improvement when used to define functional groups of genes. In conclusion, prior knowledge about trait-specific groups of genes can be directly translated into improved genomic prediction.

19.
Metallomics ; 11(12): 2052-2065, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31651002

RESUMO

Hyperaccumulator plants present the ideal model system for studying the physiological regulation of the essential (and potentially toxic) transition elements nickel and zinc. This study used synchrotron X-ray Fluorescence Microscopy (XFM) elemental imaging and spatially resolved X-ray Absorption Spectroscopy (XAS) to elucidate elemental localization and chemical speciation of nickel and zinc in the hyperaccumulators Noccaea tymphaea and Bornmuellera emarginata (synonym Leptoplax emarginata). The results show that in the leaves of N. tymphaea nickel and zinc have contrasting localization, and whereas nickel is present in vacuoles of epidermal cells, zinc occurs mainly in the mesophyll cells. In the seeds Ni and Zn are similarly localized and strongly enriched in the cotyledons in N. tymphaea. Nickel is strongly enriched in the tip of the radicle of B. emarginata. Noccaea tymphaea has an Fe-rich provascular strand network in the cotyledons of the seed. The chemical speciation of Ni in the seeds of N. tymphaea is unequivocally associated with carboxylic acids, whereas Zn is present as the phytate complex. The spatially resolved spectroscopy did not reveal any spatial variation in chemical speciation of Ni and Zn within the N. tymphaea seed. The dissimilar ecophysiological behaviour of Ni and Zn in N. tymphaea and B. emarginata raises questions about the evolution of hyperaccumulation in these species.


Assuntos
Brassicaceae/química , Células do Mesofilo/química , Níquel/análise , Folhas de Planta/química , Vacúolos/química , Zinco/análise , Brassicaceae/classificação , Sementes/química , Especificidade da Espécie , Espectroscopia por Absorção de Raios X
20.
BMC Plant Biol ; 19(1): 410, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533608

RESUMO

BACKGROUND: Phosphorus is often present naturally in the soil as inorganic phosphate, Pi, which bio-availability is limited in many ecosystems due to low soil solubility and mobility. Plants respond to low Pi with a Pi Starvation Response, involving Pi sensing and long-distance signalling. There is extensive cross-talk between Pi homeostasis mechanisms and the homeostasis mechanism for other anions in response to Pi availability. RESULTS: Recombinant Inbred Line (RIL) and Genome Wide Association (GWA) mapping populations, derived from or composed of natural accessions of Arabidopsis thaliana, were grown under sufficient and deficient Pi supply. Significant treatment effects were found for all traits and significant genotype x treatment interactions for the leaf Pi and sulphate concentrations. Using the RIL/QTL population, we identified 24 QTLs for leaf concentrations of Pi and other anions, including a major QTL for leaf sulphate concentration (SUL2) mapped to the bottom of chromosome (Chr) 1. GWA mapping found 188 SNPs to be associated with the measured traits, corresponding to 152 genes. One of these SNPs, associated with leaf Pi concentration, mapped to PP2A-1, a gene encoding an isoform of the catalytic subunit of a protein phosphatase 2A. Of two additional SNPs, associated with phosphate use efficiency (PUE), one mapped to AT5G49780, encoding a leucine-rich repeat protein kinase involved in signal transduction, and the other to SIZ1, a gene encoding a SUMO E3 ligase, and a known regulator of P starvation-dependent responses. One SNP associated with leaf sulphate concentration was found in SULTR2;1, encoding a sulphate transporter, known to enhance sulphate translocation from root to shoot under P deficiency. Finally, one SNP was mapped to FMO GS-OX4, a gene encoding glucosinolate S-oxygenase involved in glucosinolate biosynthesis, which located within the confidence interval of the SUL2 locus. CONCLUSION: We identified several candidate genes with known functions related to anion homeostasis in response to Pi availability. Further molecular studies are needed to confirm and validate these candidate genes and understand their roles in examined traits. Such knowledge will contribute to future breeding for improved crop PUE .


Assuntos
Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas/genética , Ecossistema , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...