Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pineal Res ; 62(2)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27889913

RESUMO

Ovarian aging is characterized by gradual declines in oocyte quantity and quality. Melatonin is considered an anti-aging agent due to its cytoprotective actions as an antioxidant. This study examined whether long-term melatonin treatment would delay ovarian aging in mice. Female ICR mice (10 weeks old) were given melatonin-containing water (100 µg/mL; melatonin) or water only until 43 weeks of age. Their oocytes were recovered from the oviduct, and in vitro fertilization was performed. The ovaries were used for a histological analysis of the number of follicles. The mRNA expression of the aging-related sirtuin genes (SIRT1, SIRT3) and the autophagy-related gene (LC3) and the telomere length of the ovarian chromosomes were analyzed. Transcriptome changes in the ovaries were also characterized using microarray. The number of ovulated oocytes decreased with age; however, it was greater in melatonin-treated mice than that from control animals. The decreased fertilization rate and blastocyst rate during aging also were higher in the melatonin-treated mice than in the controls, as were the numbers of primordial, primary, and antral follicles. The mRNA expression of SIRT1 and LC3 and telomere length were enhanced due to melatonin treatment. Seventy-eight genes that were downregulated during aging and upregulated by melatonin were identified by a microarray analysis. Forty of these 78 genes were ribosome-related genes, and a free radical scavenging network was identified. The present results indicate that melatonin delays ovarian aging by multiple mechanisms including antioxidant action, maintaining telomeres, stimulating SIRT expression and ribosome function, and by reducing autophagy.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/farmacologia , Fertilidade/efeitos dos fármacos , Melatonina/farmacologia , Ovário/efeitos dos fármacos , Animais , Feminino , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Análise de Sequência com Séries de Oligonucleotídeos , Oócitos/efeitos dos fármacos , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma/efeitos dos fármacos
2.
J Obstet Gynaecol Res ; 40(1): 1-11, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24118696

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is secreted during the dark hours at night by the pineal gland. After entering the circulation, melatonin acts as an endocrine factor and a chemical messenger of light and darkness. It regulates a variety of important central and peripheral actions related to circadian rhythms and reproduction. It also affects the brain, immune, gastrointestinal, cardiovascular, renal, bone and endocrine functions and acts as an oncostatic and anti-aging molecule. Many of melatonin's actions are mediated through interactions with specific membrane-bound receptors expressed not only in the central nervous system, but also in peripheral tissues. Melatonin also acts through non-receptor-mediated mechanisms, for example serving as a scavenger for reactive oxygen species and reactive nitrogen species. At both physiological and pharmacological concentrations, melatonin attenuates and counteracts oxidative stress and regulates cellular metabolism. Growing scientific evidence of reproductive physiology supports the role of melatonin in human reproduction. This review was conducted to investigate the effects of melatonin on female reproduction and to summarize our findings in this field.


Assuntos
Ritmo Circadiano , Genitália Feminina/metabolismo , Melatonina/fisiologia , Estresse Oxidativo , Glândula Pineal/metabolismo , Reprodução , Animais , Feminino , Genitália Feminina/crescimento & desenvolvimento , Humanos , Menopausa/metabolismo , Oogênese , Ovulação/metabolismo , Parto/metabolismo , Gravidez
3.
J Ovarian Res ; 5: 5, 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-22277103

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is secreted during the dark hours at night by pineal gland, and it regulates a variety of important central and peripheral actions related to circadian rhythms and reproduction. It has been believed that melatonin regulates ovarian function by the regulation of gonadotropin release in the hypothalamus-pituitary gland axis via its specific receptors. In addition to the receptor mediated action, the discovery of melatonin as a direct free radical scavenger has greatly broadened the understanding of melatonin's mechanisms which benefit reproductive physiology. Higher concentrations of melatonin have been found in human preovulatory follicular fluid compared to serum, and there is growing evidence of the direct effects of melatonin on ovarian function especially oocyte maturation and embryo development. Many scientists have focused on the direct role of melatonin on oocyte maturation and embryo development as an anti-oxidant to reduce oxidative stress induced by reactive oxygen species, which are produced during ovulation process. The beneficial effects of melatonin administration on oocyte maturation and embryo development have been confirmed by in vitro and in vivo experiments in animals. This review also discusses the first application of melatonin to the clinical treatment of infertile women and confirms that melatonin administration reduces intrafollicular oxidative damage and increase fertilization rates. This review summarizes our recent works and new findings related to the reported beneficial effects of melatonin on reproductive physiology in its role as a reducer of oxidative stress, especially on oocyte maturation and embryo development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...