Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37586765

RESUMO

BACKGROUND: Adoptive cell therapy (ACT) has shown promising results for the treatment of cancer and viral infections. Successful ACT relies on ex vivo expansion of large numbers of desired T-cells with strong cytotoxic capacity and in vivo persistence, which constitutes the greatest challenge to current ACT strategies. Here, in this study, we present a novel technology for ex vivo expansion of antigen-specific T-cells; artificial antigen-presenting scaffolds (Ag-scaffolds) consisting of a dextran-polysaccharide backbone, decorated with combinations of peptide-Major Histocompatibility Complex (pMHC), cytokines and co-stimulatory molecules, enabling coordinated stimulation of antigen-specific T-cells. METHODS: The capacity of Ag-scaffolds to expand antigen-specific T-cells was explored in ex vivo cultures with peripheral blood mononuclear cells from healthy donors and patients with metastatic melanoma. The resulting T-cell products were assessed for phenotypic and functional characteristics. RESULTS: We identified an optimal Ag-scaffold for expansion of T-cells for ACT, carrying pMHC and interleukin-2 (IL-2) and IL-21, with which we efficiently expanded both virus-specific and tumor-specific CD8+ T cells from peripheral blood of healthy donors and patients, respectively. The resulting T-cell products were characterized by a high frequency of antigen-specific cells with high self-renewal capacity, low exhaustion, a multifunctional cytokine profile upon antigen-challenge and superior tumor killing capacity. This demonstrates that the coordinated stimuli provided by an optimized stoichiometry of TCR engaging (pMHC) and stimulatory (cytokine) moieties is essential to obtain desired T-cell characteristics. To generate an 'off-the-shelf' multitargeting Ag-scaffold product of relevance to patients with metastatic melanoma, we identified the 30 most frequently recognized shared HLA-A0201-restricted melanoma epitopes in a cohort of 87 patients. By combining these in an Ag-scaffold product, we were able to expand tumor-specific T-cells from 60-70% of patients with melanoma, yielding a multitargeted T-cell product with up to 25% specific and phenotypically and functionally improved T cells. CONCLUSIONS: Taken together, the Ag-scaffold represents a promising new technology for selective expansion of antigen-specific CD8+ T cells directly from blood, yielding a highly specific and functionally enhanced T-cell product for ACT.


Assuntos
Melanoma , Segunda Neoplasia Primária , Humanos , Imunoterapia Adotiva , Leucócitos Mononucleares , Melanoma/terapia , Citocinas , Receptores de Antígenos de Linfócitos T
2.
Oncotarget ; 11(22): 2092-2105, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32547707

RESUMO

Immune therapy is a promising field within oncology but has been unsuccessful in ovarian cancer (OC). Still, there is rationale and evidence supporting immune therapy in OC. We investigated the potential for adoptive cell therapy (ACT) from in vitro expanded tumor-infiltrating lymphocytes (TILs) in combination with checkpoint inhibitors (ICI) and conducted immunological testing of ex vivo expanded TILs (REP-TILs). Six patients with late-stage metastatic high-grade serous OC were treated with immune therapy consisting of ipilimumab followed by surgery to obtain TILs and infusion of REP-TILs, low-dose IL-2 and nivolumab. One patient achieved a partial response and 5 others experienced disease stabilization for up to 12 months. Analysis of the REP-TILs with flow- and mass-cytometry show primarily activated and differentiated effector memory T cells. REP-TILs showed in vitro reactivity and expression of inhibitory receptors, such as LAG-3 and PD-1. Furthermore, our data indicate that addition of ipilimumab therapy improves the T cell fold expansion during production, increase the level of CD8 T cell tumor reactivity, and favorably affect the T cell phenotype. We show that the combination of ICI and ACT is feasible and safe. With one partial response and one long-lasting SD, we demonstrated the potential of ACT in OC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...