Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 125(2): 271-286, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29698111

RESUMO

Strenuous exercise can result in skeletal muscle damage, leading to the systemic mobilization, activation, and intramuscular accumulation of blood leukocytes. Eicosanoid metabolites of arachidonic acid (ARA) are potent inflammatory mediators, but whether changes in dietary ARA intake influence exercise-induced inflammation is not known. This study investigated the effect of 4 wk of dietary supplementation with 1.5 g/day ARA ( n = 9, 24 ± 1.5 yr) or corn-soy oil placebo ( n = 10, 26 ± 1.3 yr) on systemic and intramuscular inflammatory responses to an acute bout of resistance exercise (8 sets each of leg press and extension at 80% one-repetition maximum) in previously trained men. Whole EDTA blood, serum, peripheral blood mononuclear cells (PMBCs), and skeletal muscle biopsies were collected before exercise, immediately postexercise, and at 2, 4, and 48 h of recovery. ARA supplementation resulted in higher exercise-stimulated serum creatine kinase activity [incremental area under the curve (iAUC) P = 0.046] and blood leukocyte counts (iAUC for total white cells, P < 0.001; neutrophils: P = 0.007; monocytes: P = 0.015). The exercise-induced fold change in peripheral blood mononuclear cell mRNA expression of interleukin-1ß ( IL1B), CD11b ( ITGAM), and neutrophil elastase ( ELANE), as well as muscle mRNA expression of the chemokines interleukin-8 ( CXCL8) and monocyte chemoattractant protein 1 ( CCL2) was also greater in the ARA group than placebo. Despite this, ARA supplementation did not influence the histological presence of leukocytes within muscle, perceived muscle soreness, or the extent and duration of muscle force loss. These data show that ARA supplementation transiently increased the inflammatory response to acute resistance exercise but did not impair recovery. NEW & NOTEWORTHY Daily arachidonic acid supplementation for 4 wk in trained men augmented the acute systemic and intramuscular inflammatory response to a subsequent bout of resistance exercise. Greater exercise-induced inflammatory responses in men receiving arachidonic acid supplementation were not accompanied by increased symptoms of exercise-induced muscle damage. Although increased dietary arachidonic acid intake does not appear to influence basal inflammation in humans, the acute inflammatory response to exercise stress is transiently increased following arachidonic acid supplementation.


Assuntos
Ácido Araquidônico/administração & dosagem , Exercício Físico/fisiologia , Inflamação/tratamento farmacológico , Treinamento Resistido/efeitos adversos , Adolescente , Adulto , Antígeno CD11b/metabolismo , Quimiocina CCL2/metabolismo , Creatina Quinase/metabolismo , Suplementos Nutricionais , Humanos , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Elastase de Leucócito/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mialgia/tratamento farmacológico , Mialgia/metabolismo , RNA Mensageiro/metabolismo , Adulto Jovem
2.
J Appl Physiol (1985) ; 124(4): 1080-1091, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389245

RESUMO

Arachidonic acid (ARA), a polyunsaturated ω-6 fatty acid, acts as precursor to a number of prostaglandins with potential roles in muscle anabolism. It was hypothesized that ARA supplementation might enhance the early anabolic response to resistance exercise (RE) by increasing muscle protein synthesis (MPS) via mammalian target of rapamycin (mTOR) pathway activation and/or the late anabolic response by modulating ribosome biogenesis and satellite cell expansion. Nineteen men with ≥1 yr of resistance-training experience were randomized to consume either 1.5 g daily ARA or a corn-soy-oil placebo in a double-blind manner for 4 wk. Participants then undertook fasted RE (8 sets each of leg press and extension at 80% 1-repetition maximum), with vastus lateralis biopsies obtained before exercise, immediately postexercise, and at 2, 4, and 48 h of recovery. MPS (measured via stable isotope infusion) was not different between groups ( P = 0.212) over the 4-h recovery period. mTOR pathway members p70 S6 kinase and S6 ribosomal protein were phosphorylated postexercise ( P < 0.05), with no difference between groups. 45S preribosomal RNA increased 48 h after exercise only in ARA ( P = 0.012). Neural cell adhesion molecule-positive satellite cells per fiber increased 48 h after exercise ( P = 0.013), with no difference between groups ( P = 0.331). Prior ARA supplementation did not alter the acute anabolic response to RE in previously resistance-trained men; however, at 48 h of recovery, ribosome biogenesis was stimulated only in the ARA group. The findings do not support a mechanistic link between ARA and short-term anabolism, but ARA supplementation in conjunction with resistance training may stimulate increases in translational capacity. NEW & NOTEWORTHY Four weeks of daily arachidonic acid supplementation in trained men did not alter their acute muscle protein synthetic or anabolic signaling response to resistance exercise. However, 48 h after exercise, men supplemented with arachidonic acid showed greater ribosome biogenesis and a trend toward greater change in satellite cell content. Chronic arachidonic acid supplementation does not appear to regulate the acute anabolic response to resistance exercise but may augment muscle adaptation in the following days of recovery.


Assuntos
Ácido Araquidônico/administração & dosagem , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Treinamento Resistido , Adulto , Suplementos Nutricionais , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Ribossomos/metabolismo , Células Satélites de Músculo Esquelético , Adulto Jovem
3.
Artigo em Inglês | MEDLINE | ID: mdl-29413364

RESUMO

Arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid (PUFA), is the metabolic precursor to the eicosanoid family of lipid mediators. Eicosanoids have potent pro-inflammatory actions, but also act as important autocrine/paracrine signaling molecules in skeletal muscle growth and development. Whether dietary ARA is incorporated into skeletal muscle phospholipids and the resulting impact on intramuscular inflammatory and adaptive processes in-vivo is not known. In the current study, resistance trained men (≥1 year) received dietary supplementation with 1.5g/day ARA (n=9, 24 ± 1.5 years) or placebo (n=10, 26 ± 1.3 years) for 4-weeks while continuing their normal training regimen. Plasma and vastus lateralis muscle biopsies were collected in an overnight fasted state at baseline and week 4. ARA supplementation increased plasma content of ARA and gamma-linolenic acid, while decreasing relative abundance of linoleic acid, eicosapentaenoic acid, and dihomo-gamma-linolenic acid. In skeletal muscle, ARA and dihomo-gamma-linolenic acid content increased, whereas alpha-linolenic-acid was reduced. Compared to placebo, ARA supplementation reduced circulating platelet and monocyte number, and decreased the mRNA expression of the immune cell surface markers; neutrophil elastase/CD66b and interleukin 1-beta, in peripheral blood mononuclear cells. In muscle, ARA supplementation increased mRNA expression of the myogenic regulatory factors; MyoD and myogenin, but had no effect on a range of immune cell markers or inflammatory cytokines. These data show that dietary ARA supplementation can rapidly and safely modulate plasma and muscle fatty acid profile and promote myogenic gene expression in resistance trained men, without a risk of increasing basal systemic or intramuscular inflammation.


Assuntos
Ácido Araquidônico/farmacologia , Inflamação/dietoterapia , Lipídeos/análise , Músculo Esquelético/efeitos dos fármacos , Adolescente , Adulto , Ácido Araquidônico/administração & dosagem , Análise Química do Sangue , Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais , Ácidos Graxos/análise , Ácidos Graxos/sangue , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Masculino , Músculo Esquelético/metabolismo
4.
PLoS One ; 12(7): e0181594, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28750051

RESUMO

A subset of short non-coding RNAs, microRNAs (miRs), have been identified in the regulation of skeletal muscle hypertrophy and atrophy. Expressed within cells, miRs are also present in circulation (c-miR) and have a putative role in cross-tissue signalling. The aim of this study was to examine the impact of a single bout of high intensity resistance exercise (RE) on skeletal muscle and circulatory miRs harvested simultaneously. Resistance trained males (n = 9, 24.6 ± 4.9 years) undertook a single bout of high volume RE with venous blood and muscle biopsies collected before, 2 and 4hr post-exercise. Real time polymerase chain reaction (Rt-PCR) analyses was performed on 30 miRs that have previously been shown to be required for skeletal muscle function. Of these, 6 miRs were significantly altered within muscle following exercise; miR-23a, -133a, -146a, -206, -378b and 486. Analysis of these same miRs in circulation demonstrated minimal alterations with exercise, although c-miR-133a (~4 fold, p = 0.049) and c-miR-149 (~2.4 fold; p = 0.006) were increased 4hr post-exercise. Thus a single bout of RE results in the increased abundance of a subset of miRs within the skeletal muscle, which was not evident in plasma. The lack a qualitative agreement in the response pattern of intramuscular and circulating miR expression suggests the analysis of circulatory miRs is not reflective of the miR responses within skeletal muscle after exercise.


Assuntos
Exercício Físico/fisiologia , Perfilação da Expressão Gênica , MicroRNAs/sangue , MicroRNAs/genética , Músculo Esquelético/metabolismo , Treinamento Resistido , Humanos , Masculino , Adulto Jovem
5.
Front Physiol ; 8: 383, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638346

RESUMO

Powerlifters are the epitome of muscular adaptation and are able to generate extreme forces. The molecular mechanisms underpinning the significant capacity for force generation and hypertrophy are not fully elucidated. MicroRNAs (miRs) are short non-coding RNA sequences that control gene expression via promotion of transcript breakdown and/or translational inhibition. Differences in basal miR expression may partially account for phenotypic differences in muscle mass and function between powerlifters and untrained age-matched controls. Muscle biopsies were obtained from m. vastus lateralis of 15 national level powerlifters (25.1 ± 5.8 years) and 13 untrained controls (24.1 ± 2.0 years). The powerlifters were stronger than the controls (isokinetic knee extension at 60°/s: 307.8 ± 51.6 Nm vs. 211.9 ± 41.9 Nm, respectively P < 0.001), and also had larger muscle fibers (type I CSA 9,122 ± 1,238 vs. 4,511 ± 798 µm2p < 0.001 and type II CSA 11,100 ± 1,656 vs. 5,468 ± 1,477 µm2p < 0.001). Of the 17 miRs species analyzed, 12 were differently expressed (p < 0.05) between groups with 7 being more abundant in powerlifters and five having lower expression. Established transcriptionally regulated miR downstream gene targets involved in muscle mass regulation, including myostatin and MyoD, were also differentially expressed between groups. Correlation analysis demonstrates the abundance of eight miRs was correlated to phenotype including peak strength, fiber size, satellite cell abundance, and fiber type regardless of grouping. The unique miR expression profiles between groups allow for categorization of individuals as either powerlifter or healthy controls based on a five miR signature (miR-126, -23b, -16, -23a, -15a) with considerable accuracy (100%). Thus, this unique miR expression may be important to the characterization of the powerlifter phenotype.

6.
J Int Soc Sports Nutr ; 14: 17, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28603468

RESUMO

BACKGROUND: Resistance training is a potent stimulus to induce muscle hypertrophy. Supplemental protein intake is known to enhance gains in muscle mass through activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway, which initiates protein translation. While the optimal dose of high quality protein to promote post exercise anabolism in young or older men has been investigated, little is known about the minimum doses of protein required to potentiate the resistance exercise activation of anabolic signalling in middle aged men. METHODS: Twenty healthy men (46.3 ± 5.7 years, BMI: 23.9 ± 6.6 kg/m2) completed a single bout of unilateral resistance exercise consisting of 4 sets of leg extension and press at 80% of 1 repetition maximum. Participants were randomised to consume either formulated milk product containing 9 g milk protein (FMP) or an isoenergetic carbohydrate placebo (CHO) immediately post exercise, in a double blind fashion. A single muscle biopsy was collected at pre-exercise baseline and then bilateral biopsies were collected 90 and 240 min after beverage consumption. RESULTS: P70S6KThr389 phosphorylation was increased with exercise irrespective of group, P70S6KThr421/Ser424 was increased with exercise only in the FMP group at 240 min. Likewise, rpS6 Ser235/236 phosphorylation was increased with exercise irrespective of group, rpS6 Ser240/244 increased to a greater extent following exercise in the FMP group. mRNA expression of the amino acid transporter, LAT1/ SLC7A5 increased with both exercise and beverage consumption irrespective of group. PAT1/ SLC36A1, CAT1/ SLC7A1 and SNAT2/ SLC38A2 mRNA increased only after exercise regardless of group. CONCLUSIONS: Nine grams of milk protein is sufficient to augment some measures of downstream mTORC1 signalling after resistance exercise but does not potentiate exercise induced increases in amino acid transporter expression. Formulated products containing nine grams of milk protein would be expected stimulate muscle anabolism after resistance exercise. TRIAL REGISTRATION: New Zealand Clinical Trials Registry ACTRN12615001375549. Registered: 17 December, 2015.


Assuntos
Exercício Físico/fisiologia , Proteínas do Leite/administração & dosagem , Treinamento Resistido , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Adulto , Sistema A de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Método Duplo-Cego , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Pessoa de Meia-Idade , Fosforilação , Simportadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...