Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 24(26): 30015-30023, 2016 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28059386

RESUMO

Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. Combining this technique with low absorption multilayer dielectric gratings developed in our group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.

2.
Opt Lett ; 34(11): 1708-10, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19488156

RESUMO

We have developed improved cavity-finesse methods for characterizing the diffraction efficiencies of large gratings at the Littrow angle. These methods include measuring cavity length with optical techniques, using a Michelson interferometer to calibrate piezoelectric transducer nonlinearities and angle-tuning procedures to confirm optimal alignment. We used these methods to characterize two 20 cm scale dielectric gratings. The values taken from across their surfaces collectively had means and standard deviations of micro=99.293% and sigma=0.164% and micro=99.084% and sigma=0.079%. The greatest efficiency observed at a single point on a grating was (99.577+/-0.002)%, which is also the most accurate measurement of the diffraction efficiency in the literature of which we are aware. These results prove that a high diffraction efficiency with low variation is achievable across large apertures for gratings.

3.
Appl Opt ; 42(28): 5706-13, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-14528933

RESUMO

Wet-etch figuring utilizes free surface flows driven by surface tension gradients (the Marangoni effect) to confine and stabilize the size and shape of an etchant droplet attached to the underside of a glass surface. This droplet, or wetted zone, is translated on the surface, etching where it contacts and leaving behind no residue, to facilitate an etching-based small-tool figuring process that is free of mechanical and thermal stresses. The optic needs no backing plate, and its back side is free for inspection by optical means. When transmissive optics is figured, the optical thickness between the front and the rear surfaces of the optic is measured interferometrically and used in real time to control the local dwell time of the etchant zone. This truly closed-loop figuring process is robust, environmentally insensitive, and fully automated. It is particularly suited for figuring patterns such as phase plates, corrective elements, and optical flats on very thin (<< 1-mm) substrates that are difficult to figure with traditional abrasive polishing methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...