Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Deliv ; 26(1): 1039-1048, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31691600

RESUMO

Tuberculosis (TB) has gained attention over the past few decades by becoming one of the top ten leading causes of death worldwide. This infectious disease of the lungs is orally treated with a medicinal armamentarium. However, this route of administration passes through the body's first-pass metabolism which reduces the drugs' bioavailability and toxicates the liver and kidneys. Inhalation therapy represents an alternative to the oral route, but low deposition efficiencies of delivery devices such as nebulizers and dry powder inhalers render it challenging as a favorable therapy. It was hypothesized that by encapsulating two potent TB-agents, i.e. Q203 and bedaquiline, that inhibit the oxidative phosphorylation of the bacteria together with a magnetic targeting component, superparamagnetic iron oxides, into a poly (D, L-lactide-co-glycolide) (PDLG) carrier using a single emulsion technique, the treatment of TB can be a better therapeutic alternative. This simple fabrication method achieved a homogenous distribution of 500 nm particles with a magnetic saturation of 28 emu/g. Such particles were shown to be magnetically susceptible in an in-vitro assessment, viable against A549 epithelial cells, and were able to reduce two log bacteria counts of the Bacillus Calmette-Guerin (BCG) organism. Furthermore, through the use of an external magnet, our in-silico Computational Fluid Dynamics (CFD) simulations support the notion of yielding 100% deposition in the deep lungs. Our proposed inhalation therapy circumvents challenges related to oral and respiratory treatments and embodies a highly favorable new treatment regime.


Assuntos
Antituberculosos/farmacologia , Diarilquinolinas/química , Compostos Férricos/química , Imidazóis/química , Pulmão/efeitos dos fármacos , Nanopartículas de Magnetita/química , Piperidinas/química , Piridinas/química , Tuberculose/tratamento farmacológico , Células A549 , Administração por Inalação , Antituberculosos/metabolismo , Disponibilidade Biológica , Linhagem Celular Tumoral , Diarilquinolinas/metabolismo , Diarilquinolinas/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Inaladores de Pó Seco/métodos , Humanos , Pulmão/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/metabolismo
2.
Sci Rep ; 9(1): 8608, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197236

RESUMO

The influence of carbon metabolism on oxidative phosphorylation is poorly understood in mycobacteria. M. tuberculosis expresses two respiratory terminal oxidases, the cytochrome bc1:aa3 and the cytochrome bd oxidase, which are jointly required for oxidative phosphorylation and mycobacterial viability. The essentiality of the cytochrome bc1:aa3 for optimum growth is illustrated by its vulnerability to chemical inhibition by the clinical drug candidate Q203 and several other chemical series. The cytochrome bd oxidase is not strictly essential for growth but is required to maintain bioenergetics when the function of the cytochrome bc1:aa3 is compromised. In this study, we observed that the potency of drugs targeting the cytochrome bc1:aa3 is influenced by carbon metabolism. The efficacy of Q203 and related derivatives was alleviated by glycerol supplementation. The negative effect of glycerol supplementation on Q203 potency correlated with an upregulation of the cytochrome bd oxidase-encoding cydABDC operon. Upon deletion of cydAB, the detrimental effect of glycerol on the potency of Q203 was abrogated. The same phenomenon was also observed in recent clinical isolates, but to a lesser extent compared to the laboratory-adapted strain H37Rv. This study reinforces the importance of optimizing in vitro culture conditions for drug evaluation in mycobacteria, a factor which appeared to be particularly essential for drugs targeting the cytochrome bc1:aa3 terminal oxidase.


Assuntos
Antituberculosos/farmacologia , Carbono/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Resistência a Medicamentos/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glicerol/farmacologia , Imidazóis/farmacologia , Mutação/genética , Mycobacterium tuberculosis/isolamento & purificação , Óperon/genética , Piperidinas/farmacologia , Piridinas/farmacologia
3.
Proc Natl Acad Sci U S A ; 114(28): 7426-7431, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652330

RESUMO

The recent discovery of small molecules targeting the cytochrome bc1 :aa3 in Mycobacterium tuberculosis triggered interest in the terminal respiratory oxidases for antituberculosis drug development. The mycobacterial cytochrome bc1 :aa3 consists of a menaquinone:cytochrome c reductase (bc1 ) and a cytochrome aa3 -type oxidase. The clinical-stage drug candidate Q203 interferes with the function of the subunit b of the menaquinone:cytochrome c reductase. Despite the affinity of Q203 for the bc1 :aa3 complex, the drug is only bacteriostatic and does not kill drug-tolerant persisters. This raises the possibility that the alternate terminal bd-type oxidase (cytochrome bd oxidase) is capable of maintaining a membrane potential and menaquinol oxidation in the presence of Q203. Here, we show that the electron flow through the cytochrome bd oxidase is sufficient to maintain respiration and ATP synthesis at a level high enough to protect M. tuberculosis from Q203-induced bacterial death. Upon genetic deletion of the cytochrome bd oxidase-encoding genes cydAB, Q203 inhibited mycobacterial respiration completely, became bactericidal, killed drug-tolerant mycobacterial persisters, and rapidly cleared M. tuberculosis infection in vivo. These results indicate a synthetic lethal interaction between the two terminal respiratory oxidases that can be exploited for anti-TB drug development. Our findings should be considered in the clinical development of drugs targeting the cytochrome bc1 :aa3 , as well as for the development of a drug combination targeting oxidative phosphorylation in M. tuberculosis.


Assuntos
Mycobacterium tuberculosis/metabolismo , Oxirredutases/química , Mutações Sintéticas Letais , Trifosfato de Adenosina/química , Animais , Antineoplásicos/farmacologia , Antituberculosos/farmacologia , Redutases do Citocromo/metabolismo , Diarilquinolinas/farmacologia , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Deleção de Genes , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Mitocondriais , Infecções por Mycobacterium/microbiologia , Mycobacterium bovis , Mycobacterium tuberculosis/genética , Fosforilação Oxidativa , Oxirredutases/genética , Oxigênio/química , Proteínas de Plantas , Células THP-1
4.
J Biol Chem ; 290(23): 14350-60, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25861988

RESUMO

Recently, energy production pathways have been shown to be viable antitubercular drug targets to combat multidrug-resistant tuberculosis and eliminate pathogen in the dormant state. One family of drugs currently under development, the imidazo[1,2-a]pyridine derivatives, is believed to target the pathogen's homolog of the mitochondrial bc1 complex. This complex, denoted cytochrome bcc, is highly divergent from mitochondrial Complex III both in subunit structure and inhibitor sensitivity, making it a good target for drug development. There is no soluble cytochrome c in mycobacteria to transport electrons from the bcc complex to cytochrome oxidase. Instead, the bcc complex exists in a "supercomplex" with a cytochrome aa3-type cytochrome oxidase, presumably allowing direct electron transfer. We describe here purification and initial characterization of the mycobacterial cytochrome bcc-aa3 supercomplex using a strain of M. smegmatis that has been engineered to express the M. tuberculosis cytochrome bcc. The resulting hybrid supercomplex is stable during extraction and purification in the presence of dodecyl maltoside detergent. It is hoped that this purification procedure will potentiate functional studies of the complex as well as crystallographic studies of drug binding and provide structural insight into a third class of the bc complex superfamily.


Assuntos
Proteínas de Bactérias/química , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Infecções por Mycobacterium/microbiologia , Mycobacterium smegmatis/química , Mycobacterium tuberculosis/química , Proteínas de Bactérias/isolamento & purificação , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/isolamento & purificação , Complexo IV da Cadeia de Transporte de Elétrons/isolamento & purificação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...