Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 24(47): 475707, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24192522

RESUMO

The deformation mechanism and mechanical properties of carbon nanotube (CNT) forests conformally coated with alumina using atomic layer deposition (ALD) are investigated using in situ and ex situ micro-indentation. While micro-indentation of a CNT forest coated with a thin discontinuous layer using 20 ALD cycles results in a deformation response similar to the response of uncoated CNT forests, a similar test on a CNT forest coated with a sufficiently thick and continuous layer using 100 ALD cycles causes fracture of both the alumina coatings and the core CNTs. With a 10 nm coating, 4-fold and 14-fold stiffness increases are measured using a flat punch and a Berkovich tip, respectively. Indentation testing with the Berkovich tip also reveals increased recoverability at relatively low strains. The results show that ALD coated CNT forests could be useful for applications that require higher stiffness or recoverability. Also, fracturing of the nanotubes shows that upper limits exist in the loading of conformally coated CNT forests.

2.
Nanotechnology ; 24(10): 105401, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23425973

RESUMO

Vertical carbon nanotube (CNT) forests bonded at room temperature with sprayed on nanoscale polymer coatings are found by measurement to produce thermal resistances that are on a par with those of conventional metallic solders. These results are achieved by reducing the high contact resistance at CNT tips, which has hindered the development of high performance thermal interface materials based on CNTs. A spray coating process is developed for depositing nanoscale coatings of polystyrene and poly-3-hexylthiophene onto CNT forests, as a bonding agent that mitigates thermal resistance by enhancing the area available for heat transfer at CNT contacts. Resistances as low as 4.9 ± 0.3 mm(2) K W(-1) are achieved for the entire polymer coated CNT interface structure. The suitability of the spray coating process for large-scale implementation and the role of polymer and CNT forest thickness in determining the thermal resistance are also examined.

3.
Nanoscale ; 4(11): 3373-80, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22543679

RESUMO

This study reports the mechanical response of distinct carbon nanotube (CNT) morphologies as revealed by flat punch in situ nanoindentation in a scanning electron microscope. We find that the location of incipient deformation varies significantly by changing the CNT growth parameters. The initial buckles formed close to the growth substrate in 70 and 190 µm tall CNT forests grown with low pressure chemical vapor deposition (LPCVD) and moved to ∼100 µm above the growth substrate when the height increased to 280 µm. Change of the recipe from LPCVD to CVD at pressures near atmospheric changed the location of the initial buckling event from the bottom half to the top half of the CNT forest. Plasma pretreatment of the catalyst also resulted in a unique CNT forest morphology in which deformation started by bending and buckling of the CNT tips. We find that the vertical gradients in CNT morphology dictate the location of incipient buckling. These new insights are critical in the design of CNT forests for a variety of applications where mechanical contact is important.

4.
ACS Nano ; 6(3): 2189-97, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22332591

RESUMO

We report mechanical behavior and strain rate dependence of recoverability and energy dissipation in vertically aligned carbon nanotube (VACNT) bundles subjected to quasi-static uniaxial compression. We observe three distinct regimes in their stress-strain curves for all explored strain rates from 4 × 10(-2) down to 4 × 10(-4)/sec: (1) a short initial elastic section followed by (2) a sloped plateau with characteristic wavy features corresponding to buckle formation and (3) densification characterized by rapid stress increase. Load-unload cycles reveal a stiffer response and virtually 100% recoverability at faster strain rates of 0.04/sec, while the response is more compliant at slower rates, characterized by permanent localized buckling and significantly reduced recoverability. We propose that it is the kinetics of attractive adhesive interactions between the individual carbon nanotubes within the VACNT matrix that governs morphology evolution and ensuing recoverability. In addition, we report a 6-fold increase in elastic modulus and gradual decrease in recoverability (down to 50%) when VACNT bundles are unloaded from postdensification stage as compared with predensification. Finally, we demonstrate energy dissipation capability, as revealed by hysteresis in load-unload cycles. These findings, together with high thermal and electrical conductivities, position VACNTs in the "unattained-as-of-to-date-space" in the material property landscape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...