Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38935746

RESUMO

The control of local heterogeneities in metallic glasses (MGs) represents an emerging field to improve their plasticity, preventing the propagation of catastrophic shear bands (SBs) responsible for the macroscopically brittle failure. To date, a nanoengineered approach aimed at finely tuning local heterogeneities controlling SB nucleation and propagation is still missing, hindering the potential to develop MGs with large and tunable strength/ductility balance and controlled deformation behavior. In this work, we exploited the potential of pulsed laser deposition (PLD) to synthesize a novel class of crystal/glass ultrafine nanolaminates (U-NLs) in which a ∼4 nm thick crystalline Al separates 6 and 9 nm thick Zr50Cu50 glass nanolayers, while reporting a high density of sharp interfaces and large chemical intermixing. In addition, we tune the morphology by synthesizing compact and nanogranular U-NLs, exploiting, respectively, atom-by-atom or cluster-assembled growth regimes. For compact U-NLs, we report high mass density (∼8.35 g/cm3) and enhanced and tunable mechanical behavior, reaching maximum values of hardness and yield strength of up to 9.3 and 3.6 GPa, respectively. In addition, we show up to 3.6% homogeneous elastoplastic deformation in compression as a result of SB blocking by the Al-rich sublayers. On the other hand, nanogranular U-NLs exhibit slightly lower yield strength (3.4 GPa) in combination with enhanced elastoplastic deformation (∼6%) followed by the formation of superficial SBs, which are not percolative even at deformations exceeding 15%, as a result of the larger free volume content within the cluster-assembled structure and the presence of crystal/glass nanointerfaces, enabling to accommodate SB events. Overall, we show how PLD enables the synthesis of crystal/glass U-NLs with ultimate control of local heterogeneities down to the atomic scale, providing new nanoengineered strategies capable of deep control of the deformation behavior, surpassing traditional trade-off between strength and ductility. Our approach can be extended to other combinations of metallic materials with clear interest for industrial applications such as structural coatings and microelectronics (MEMS and NEMS).

2.
ACS Appl Mater Interfaces ; 15(8): 11268-11280, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791093

RESUMO

Ohmic or Schottky contacts in micro- and nanoelectronic devices are formed by metal-semiconductor bilayer systems, based on elemental metals or thermally more stable metallic compounds (germanides, silicides). The control of their electronic properties remains challenging as their structure formation is not yet fully understood. We have studied the phase and microstructure evolution during sputter deposition and postgrowth annealing of Pd/a-Ge bilayer systems with different Pd/Ge ratios (Pd:Ge, 2Pd:Ge, and 4Pd:Ge). The room-temperature deposition of up to 30 nm Pd was monitored by simultaneous, in situ synchrotron X-ray diffraction, X-ray reflectivity, and optical stress measurements. With this portfolio of complementary real-time methods, we could identify the microstructural origins of the resistivity evolution during contact formation: Real-time X-ray diffraction measurements indicate a coherent, epitaxial growth of Pd(111) on the individual crystallites of the initially forming, polycrystalline Pd2Ge[111] layer. The crystallization of the Pd2Ge interfacial layer causes a characteristic change in the real-time wafer curvature (tensile peak), and a significant drop of the resistivity after 1.5 nm Pd deposition. In addition, we could confirm the isostructural interface formation of Pd/a-Ge and Pd/a-Si. Subtle differences between both interfaces originate from the lattice mismatch at the interface between compound and metal. The solid-state reaction during subsequent annealing was studied by real-time X-ray diffraction and complementary UHV surface analysis. We could establish the link between phase and microstructure formation during deposition and annealing-induced solid-state reaction: The thermally induced reaction between Pd and a-Ge proceeds via diffusion-controlled growth of the Pd2Ge seed crystallites. The second-phase (PdGe) formation is nucleation-controlled and takes place only when a sufficient Ge reservoir exists. The real-time access to structure and electronic properties on the nanoscale opens new paths for the knowledge-based formation of ultrathin metal/semiconductor contacts.

3.
Nanomaterials (Basel) ; 10(11)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182409

RESUMO

Continued downscaling of functional layers for key enabling devices has prompted the development of characterization tools to probe and dynamically control thin film formation stages and ensure the desired film morphology and functionalities in terms of, e.g., layer surface smoothness or electrical properties. In this work, we review the combined use of in situ and real-time optical (wafer curvature, spectroscopic ellipsometry) and electrical probes for gaining insights into the early growth stages of magnetron-sputter-deposited films. Data are reported for a large variety of metals characterized by different atomic mobilities and interface reactivities. For fcc noble-metal films (Ag, Cu, Pd) exhibiting a pronounced three-dimensional growth on weakly-interacting substrates (SiO2, amorphous carbon (a-C)), wafer curvature, spectroscopic ellipsometry, and resistivity techniques are shown to be complementary in studying the morphological evolution of discontinuous layers, and determining the percolation threshold and the onset of continuous film formation. The influence of growth kinetics (in terms of intrinsic atomic mobility, substrate temperature, deposition rate, deposition flux temporal profile) and the effect of deposited energy (through changes in working pressure or bias voltage) on the various morphological transition thicknesses is critically examined. For bcc transition metals, like Fe and Mo deposited on a-Si, in situ and real-time growth monitoring data exhibit transient features at a critical layer thickness of ~2 nm, which is a fingerprint of an interface-mediated crystalline-to-amorphous phase transition, while such behavior is not observed for Ta films that crystallize into their metastable tetragonal ß-Ta allotropic phase. The potential of optical and electrical diagnostic tools is also explored to reveal complex interfacial reactions and their effect on growth of Pd films on a-Si or a-Ge interlayers. For all case studies presented in the article, in situ data are complemented with and benchmarked against ex situ structural and morphological analyses.

4.
Data Brief ; 30: 105411, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32215311

RESUMO

These data are supplied for supporting their interpretations and discussions provided in the research article "Large influence of vacancies on the elastic constants of cubic epitaxial tantalum nitride layers grown by reactive magnetron sputtering" by Abadias et al. (2020) [doi: 10.1016/j.actamat.2019.11.041]. The datasheet describes the experimental methods used to measure the longitudinal (VL) and transverse (VT) sound velocities of cubic epitaxial TaN/MgO thin films, and their related cubic elastic constants (c11, c12 and c44), by the picosecond laser ultrasonic (PLU) and the Brillouin light scattering (BLS) techniques, respectively. First-principles numerical simulations provide additional data using specifically designed supercells of TaN structures, generated either by hand or using the alloy theoretical automated toolkit (ATAT) method [A. Zunger et al. (1990)], with different configurations (random, cluster and ordered) of defects (Ta and N vacancies). Phonons calculations support discussion of dynamical mechanical stability of defected TaN cubic structures. The data illustrate the huge role of vacancies in elastic properties and phase stability of TaN films.

5.
ACS Appl Mater Interfaces ; 11(42): 39315-39323, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547648

RESUMO

Synchrotron experiments combining real-time stress, X-ray diffraction, and X-ray reflectivity measurements, complemented by in situ electron diffraction and photon electron spectroscopy measurements, revealed a detailed picture of the interfacial silicide formation during deposition of ultrathin Pd layers on amorphous silicon. Initially, an amorphous Pd2Si interlayer is formed. At a critical thickness of 2.3 nm, this layer crystallizes and the resulting volume reduction leads to a tensile stress buildup. The [111] textured Pd2Si layer continues to grow up to a thickness of ≈3.7 nm and is subsequently covered by a Pd layer with [111] texture. The tensile stress relaxes already during Pd2Si growth. A comparison between the texture formation on SiOx and a-Si shows that the silicide layer serves as a template for the Pd layer, resulting in a surprisingly narrow texture of only 3° after 800 s Pd deposition. The texture formation of Pd and Pd2Si can be explained by the low lattice mismatch between Pd(111) and Pd2Si(111). The combined experimental results indicate a similar interface formation mechanism for Pd on a-Si and c-Si, whereas the resulting silicide texture depends on the Si surface. A new strain relaxation mechanism via grain boundary diffusion is proposed, taking into account the influence of the thickness-dependent crystallization on the material transport through the silicide layer. In combination with the small lattice mismatch, the grain boundary diffusion facilitates the growth of Pd clusters, explaining thus the well-defined thickness of the interfacial silicide layer, which limits the miniaturization of self-organized silicide layers for microelectronic devices.

6.
Sci Rep ; 7(1): 1655, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28490804

RESUMO

We report on a new route to grow epitaxial copper (Cu) ultra-thin films (up to 150 nm thick) at ambient temperature on Si(001) wafers covered with native oxide without any prior chemical etching or plasma cleaning of the substrate. It consists of a single-step deposition process using high power impulse magnetron sputtering (HiPIMS) and substrate biasing. For a direct current (DC) substrate bias voltage of -130 V, Cu/Si heteroepitaxial growth is achieved by HiPIMS following the Cu(001) [100]//Si(001) [110] orientation, while under the same average deposition conditions, but using conventional DC magnetron sputtering, polycrystalline Cu films with [111] preferred orientation are deposited. In addition, the intrinsic stress has been measured in situ during growth by real-time monitoring of the wafer curvature. For this particular HiPIMS case, the stress is slightly compressive (-0.1 GPa), but almost fully relaxes after growth is terminated. As a result of epitaxy, the Cu surface morphology exhibits a regular pattern consisting of square-shaped mounds with a lateral size of typically 150 nm. For all samples, X-ray diffraction pole figures and scanning/transmission electron microscopy reveal the formation of extensive twinning of the Cu {111} planes.

7.
Appl Spectrosc ; 71(6): 1271-1279, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27956593

RESUMO

Giving paper and polymer photochromic properties under laser irradiation is challenging due to the low resistance of these materials to heat, their flexibility, and their possibly irregular structure. However, we could successfully deposit TiO2/Ag/TiO2 layers stacking on flexible white glossy paper and transparent polyethylene terephalate (PET) substrates using a reactive magnetron sputtering technique, and tailor coloration changes after laser irradiation, alternating visible and ultraviolet (UV) wavelengths. The sample colors are characterized by a panel of chromas depending on the irradiation conditions. We demonstrate that these chroma changes are due to morphological changes of Ag nanoparticles (NPs) after visible laser irradiation of the colored as-deposited sample. The process exhibits a good reversibility after subsequent UV irradiation due to the growth of new metallic Ag NPs. The colors displayed in diffuse reflection by the paper samples are more saturated than the ones displayed in regular transmission by PET samples. We demonstrate the efficiency of the photochromic process on such support by printing high resolution patterns exhibiting different colors depending on the observation conditions.

8.
ACS Appl Mater Interfaces ; 8(50): 34888-34895, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27998117

RESUMO

The kinetics of phase transitions during formation of small-scale systems are essential for many applications. However, their experimental observation remains challenging, making it difficult to elucidate the underlying fundamental mechanisms. Here, we combine in situ and real-time synchrotron X-ray diffraction (XRD) and X-ray reflectivity (XRR) experiments with substrate curvature measurements during deposition of nanoscale Mo and Mo1-xSix films on amorphous Si (a-Si). The simultaneous measurements provide direct evidence of a spontaneous, thickness-dependent amorphous-to-crystalline (a-c) phase transition, associated with tensile stress build-up and surface roughening. This phase transformation is thermodynamically driven, the metastable amorphous layer being initially stabilized by the contributions of surface and interface energies. A quantitative analysis of the XRD data, complemented by simulations of the transformation kinetics, unveils an interface-controlled crystallization process. This a-c phase transition is also dominating the stress evolution. While stress build-up can significantly limit the performance of devices based on nanostructures and thin films, it can also trigger the formation of these structures. The simultaneous in situ access to the stress signal itself, and to its microstructural origins during structure formation, opens new design routes for tailoring nanoscale devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...