Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 9(12)2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291797

RESUMO

Functional and morphological modifications in the brain caused by major mood disorders involve many brain areas, including the hippocampus, leading to cognitive and mood alterations. Cav1.2 channel expression has been found to increase in animals with depressive-like behaviors. Calcium influx through these channels is associated with changes in excitation-transcriptional coupling by several intracellular signal pathways that are regulated by its C-terminus region. However, which of these signaling pathways is activated during the development of depressive-like behaviors is not known. Here, we evaluate the phosphorylation and expression levels of crucial kinases and transcription factors at the hippocampus of rats after 21 days of chronic restraint stress. Our results show that rats subjected to CRS protocol achieve less body weight, have heavier adrenal glands, and exhibit depression-like behaviors such as anhedonia, behavioral despair and decreased social interaction. Cav1.2 mRNA and protein expression levels, plus l-type calcium current amplitude, are also increased in treated rats when compared with control animals. Out of the three main signaling pathways activated by l-type currents, we only observed an increment of CaM-NFAT axis activity with the concomitant increment in Fas ligand expression. Thus, our results suggest that CRS activates specific pathways, and the increased expression of Cav1.2 could lead to neuronal death in the hippocampus.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Depressão/fisiopatologia , Hipocampo/metabolismo , Transdução de Sinais , Glândulas Suprarrenais , Anedonia , Animais , Comportamento Animal , Peso Corporal , Cálcio/metabolismo , Transtorno Depressivo Maior/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Ligantes , Masculino , Neurônios/metabolismo , Fosforilação , Domínios Proteicos , Ratos , Ratos Sprague-Dawley , Natação
2.
Lab Invest ; 100(2): 234-249, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31444399

RESUMO

Sepsis is the main cause of mortality in patients admitted to intensive care units. During sepsis, endothelial permeability is severely augmented, contributing to renal dysfunction and patient mortality. Ca2+ influx and the subsequent increase in intracellular [Ca2+]i in endothelial cells (ECs) are key steps in the establishment of endothelial hyperpermeability. Transient receptor potential melastatin 7 (TRPM7) ion channels are permeable to Ca2+ and are expressed in a broad range of cell types and tissues, including ECs and kidneys. However, the role of TRPM7 on endothelial hyperpermeability during sepsis has remained elusive. Therefore, we investigated the participation of TRPM7 in renal vascular hyperpermeability, renal dysfunction, and enhanced mortality induced by endotoxemia. Our results showed that endotoxin increases endothelial hyperpermeability and Ca2+ overload through the TLR4/NOX-2/ROS/NF-κB pathway. Moreover, endotoxin exposure was shown to downregulate the expression of VE-cadherin, compromising monolayer integrity and enhancing vascular hyperpermeability. Notably, endotoxin-induced endothelial hyperpermeability was substantially inhibited by pharmacological inhibition and specific suppression of TRPM7 expression. The endotoxin was shown to upregulate the expression of TRPM7 via the TLR4/NOX-2/ROS/NF-κB pathway and induce a TRPM7-dependent EC Ca2+ overload. Remarkably, in vivo experiments performed in endotoxemic animals showed that pharmacological inhibition and specific suppression of TRPM7 expression inhibits renal vascular hyperpermeability, prevents kidney dysfunction, and improves survival in endotoxemic animals. Therefore, our results showed that TRPM7 mediates endotoxemia-induced endothelial hyperpermeability, renal dysfunction, and enhanced mortality, revealing a novel molecular target for treating renal vascular hyperpermeability and kidney dysfunction during endotoxemia, sepsis, and other inflammatory diseases.


Assuntos
Permeabilidade Capilar/fisiologia , Endotélio Vascular/metabolismo , Endotoxemia , Nefropatias/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Linhagem Celular , Endotélio Vascular/fisiopatologia , Endotoxemia/metabolismo , Endotoxemia/mortalidade , Células Endoteliais da Veia Umbilical Humana , Humanos , Rim/metabolismo , Rim/fisiopatologia , Nefropatias/fisiopatologia , Masculino , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Canais de Cátion TRPM/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-28968511

RESUMO

Stress is a primary contributing factor of fish disease and mortality in aquaculture. We have previously reported that the red cusk-eel (Genypterus chilensis), an important farmed marine fish, demonstrates a handling-stress response that results in increased juvenile mortality, which is mainly associated with skeletal muscle atrophy and liver steatosis. To better understand the systemic effects of stress on red cusk-eel immune-related gene expression, the present study assessed the transcriptomic head-kidney response to handling-stress. The RNA sequencing generated a total of 61,655,525 paired-end reads from control and stressed conditions. De novo assembly using the CLC Genomic Workbench produced 86,840 transcripts and created a reference transcriptome with a N50 of 1426bp. Reads mapped onto the assembled reference transcriptome resulted in the identification of 569 up-regulated and 513 down-regulated transcripts. Gene ontology enrichment analysis revealed a significant up-regulation of the biological processes, like response to stress, response to biotic stimulus, and immune response. Conversely, a significant down-regulation of biological processes is associated with metabolic processes. These results were validated by RT-qPCR analysis for nine candidate genes involved in the immune response. The present data demonstrated that short term stress promotes the immune innate response in the marine teleost G. chilensis. This study is an important step towards understanding the immune adaptive response to stress in non-model teleost species.


Assuntos
Enguias/genética , Enguias/imunologia , Rim/química , Estresse Fisiológico/genética , Estresse Fisiológico/imunologia , Transcriptoma/genética , Transcriptoma/imunologia , Animais , Perfilação da Expressão Gênica , Cabeça/fisiologia , Rim/imunologia , Rim/metabolismo , Análise de Sequência de RNA
4.
BMC Genomics ; 16: 1024, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26626593

RESUMO

BACKGROUND: Fish reared under intensive conditions are repeatedly exposed to stress, which negatively impacts growth. Although most fish follow a conserved pattern of stress response, with increased concentrations of cortisol, each species presents specificities in the cell response and stress tolerance. Therefore, culturing new species requires a detailed knowledge of these specific responses. The red cusk-eel (Genypterus chilensis) is a new economically important marine species for the Chilean aquaculture industry. However, there is no information on the stress- and cortisol-induced mechanisms that decrease skeletal muscle growth in this teleost. RESULTS: Using Illumina RNA-seq technology, skeletal muscle sequence reads for G. chilensis were generated under control and handling stress conditions. Reads were mapped onto a reference transcriptome, resulting in the in silico identification of 785 up-regulated and 167 down-regulated transcripts. Gene ontology enrichment analysis revealed a significant up-regulation of catabolic genes associated with skeletal muscle atrophy. These results were validated by RT-qPCR analysis for ten candidates genes involved in ubiquitin-mediated proteolysis, autophagy and skeletal muscle growth. Additionally, using a primary culture of fish skeletal muscle cells, the effect of cortisol was evaluated in relation to red cusk-eel skeletal muscle atrophy. CONCLUSIONS: The present data demonstrated that handling stress promotes skeletal muscle atrophy in the marine teleost G. chilensis through the expression of components of the ubiquitin-proteasome and autophagy-lysosome systems. Furthermore, cortisol was a powerful inductor of skeletal muscle atrophy in fish myotubes. This study is an important step towards understanding the atrophy system in non-model teleost species and provides novel insights on the cellular and molecular mechanisms that control skeletal muscle growth in early vertebrates.


Assuntos
Peixes/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , RNA Mensageiro/genética , Estresse Fisiológico/genética , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Hidrocortisona/farmacologia , Músculo Esquelético/efeitos dos fármacos , Reprodutibilidade dos Testes , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...