Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 9639, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316525

RESUMO

The use of magnetic vector tomography/laminography has opened a 3D experimental window to access the magnetization at the nanoscale. These methods exploit the dependence of the magnetic contrast in transmission to recover its 3D configuration. However, hundreds of different angular projections are required leading to large measurement times. Here we present a fast method to dramatically reduce the experiment time specific for quasi two-dimensional magnetic systems. The algorithm uses the Beer-Lambert equation in the framework of X-ray transmission microscopy to obtain the 3D magnetic configuration of the sample. It has been demonstrated in permalloy microstructures, reconstructing the magnetization vector field with a reduced number of angular projections obtaining quantitative results. The throughput of the methodology is × 10-× 100 times faster than conventional magnetic vector tomography, making this characterization method of general interest for the community.

2.
Nanoscale ; 15(18): 8387-8394, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37092798

RESUMO

The future developments in 3D magnetic nanotechnology require the control of domain wall dynamics by means of current pulses. While this has been extensively studied in 2D magnetic strips (planar nanowires), few reports on this exist in cylindrical geometry, where Bloch point domain walls are expected to have intriguing properties. Here, we report an investigation on cylindrical magnetic Ni nanowires with geometrical notches. An experimental work based on synchrotron X-ray magnetic circular dichroism (XMCD) combined with photoemission electron microscopy (PEEM) indicates that large current densities induce domain wall nucleation, while smaller currents move domain walls preferably antiparallel to the current direction. In the region where no pinning centers are present, we found a domain wall velocity of about 1 km s-1. Thermal modelling indicates that large current densities temporarily raise the temperature in the nanowire above the Curie temperature, leading to nucleation of domain walls during the system cooling. Micromagnetic modelling with a spin-torque effect shows that for intermediate current densities, Bloch point domain walls with chirality parallel to the Oersted field propagate antiparallel to the current direction. In other cases, domain walls can be bounced from the notches and/or get pinned outside their positions. We thus found that current is not only responsible for domain wall propagation, but also is a source of pinning due to the Oersted field action.

3.
J Chem Phys ; 152(7): 074704, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087633

RESUMO

The growth of mixed cobalt-iron oxides on Ru(0001) by high-temperature oxygen-assisted molecular beam epitaxy has been monitored in real time and real space by x-ray absorption photoemission microscopy. The initial composition is a mixed Fe-Co(II) oxide wetting layer, reflecting the ratio of the deposited materials. However, as subsequent growth of three dimensional spinel islands nucleating on this wetting layer takes place, the composition of the oxide in the wetting layer changes as iron is transferred into the spinel islands. The composition of the islands themselves also changes during growth.

5.
Phys Rev Lett ; 123(21): 217201, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809154

RESUMO

While the usual approach to tailor the behavior of condensed matter and nanosized systems is the choice of material or finite-size or interfacial effects, topology alone may be the key. In the context of the motion of magnetic domain walls (DWs), known to suffer from dynamic instabilities with low mobilities, we report unprecedented velocities >600 m/s for DWs driven by spin-transfer torques in cylindrical nanowires made of a standard ferromagnetic material. The reason is the robust stabilization of a DW type with a specific topology by the Œrsted field associated with the current. This opens the route to the realization of predicted new physics, such as the strong coupling of DWs with spin waves above >600 m/s.

6.
Sci Rep ; 9(1): 11777, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409875

RESUMO

Platelets of strontium hexaferrite (SrFe12O19, SFO), up to several micrometers in width, and tens of nanometers thick have been synthesized by a hydrothermal method. They have been studied by a combination of structural and magnetic techniques, with emphasis on Mössbauer spectroscopy and X-ray absorption based-measurements including spectroscopy and microscopy on the iron-L edges and the oxygen-K edge, allowing us to establish the differences and similarities between our synthesized nanostructures and commercial powders. The Mössbauer spectra reveal a greater contribution of iron tetrahedral sites in platelets in comparison to pure bulk material. For reference, high-resolution absorption and dichroic spectra have also been measured both from the platelets and from pure bulk material. The O-K edge has been reproduced by density functional theory calculations. Out-of-plane domains were observed with 180° domain walls less than 20 nm width, in good agreement with micromagnetic simulations.

7.
2d Mater ; 6(2)2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30984408

RESUMO

We describe the reversible intercalation of Na under graphene on Ir(111) by photo-dissociation of a previously adsorbed NaCl overlayer. After room temperature evaporation, NaCl adsorbs on top of graphene forming a bilayer. With a combination of electron diffraction and photoemission techniques we demonstrate that the NaCl overlayer dissociates upon a short exposure to an X-ray beam. As a result, chlorine desorbs while sodium intercalates under the graphene, inducing an electronic decoupling from the underlying metal. Low energy electron diffraction shows the disappearance of the moiré pattern when Na intercalates between graphene and iridium. Analysis of the Na 2p core-level by X-ray photoelectron spectroscopy shows a chemical change from NaCl to metallic buried Na at the graphene/Ir interface. The intercalation-decoupling process leads to a n-doped graphene due to the charge transfer from the Na, as revealed by constant energy angle resolved X-ray photoemission maps. Moreover, the process is reversible by a mild annealing of the samples without damaging the graphene.

8.
Ultramicroscopy ; 183: 15-18, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29103782

RESUMO

High aspect-ratio Fe nanostrips are known to reversibly switch from a single-domain magnetic state to a multidomain diamond pattern as a function of temperature (T) and width. This magnetic bistability can be understood by the temperature-dependent balance between magnetocrystalline, shape and magnetoelastic anisotropies and has potential applications in magnetic logic devices. However, as Fe nanostructures easily oxidize, protecting the surface with capping layers may be required, which could largely affect the anisotropy balance. Here, we employ x-ray magnetic circular dichroism-photoemission electron microscopy (XMCD-PEEM) to study these thin Fe nanostrips before and after exposure to air.

9.
Sci Rep ; 7(1): 15460, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133957

RESUMO

The ability to control a magnetic phase with an electric field is of great current interest for a variety of low power electronics in which the magnetic state is used either for information storage or logic operations. Over the past several years, there has been a considerable amount of research on pathways to control the direction of magnetization with an electric field. More recently, an alternative pathway involving the change of the magnetic state (ferromagnet to antiferromagnet) has been proposed. In this paper, we demonstrate electric field control of the Anomalous Hall Transport in a metamagnetic FeRh thin film, accompanying an antiferromagnet (AFM) to ferromagnet (FM) phase transition. This approach provides us with a pathway to "hide" or "reveal" a given ferromagnetic region at zero magnetic field. By converting the AFM phase into the FM phase, the stray field, and hence sensitivity to external fields, is decreased or eliminated. Using detailed structural analyses of FeRh films of varying crystalline quality and chemical order, we relate the direct nanoscale origins of this memory effect to site disorder as well as variations of the net magnetic anisotropy of FM nuclei. Our work opens pathways toward a new generation of antiferromagnetic - ferromagnetic interactions for spintronics.

10.
Carbon N Y ; 119: 535-543, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28507390

RESUMO

We present a new protocol to grow large-area, high-quality single-layer graphene on Cu foils at relatively low temperatures. We use C60 molecules evaporated in ultra high vacuum conditions as carbon source. This clean environment results in a strong reduction of oxygen-containing groups as depicted by X-ray photoelectron spectroscopy (XPS). Unzipping of C60 is thermally promoted by annealing the substrate at 800ºC during evaporation. The graphene layer extends over areas larger than the Cu crystallite size, although it is changing its orientation with respect to the surface in the wrinkles and grain boundaries, producing a modulated ring in the low energy electron diffraction (LEED) pattern. This protocol is a self-limiting process leading exclusively to one single graphene layer. Raman spectroscopy confirms the high quality of the grown graphene. This layer exhibits an unperturbed Dirac-cone with a clear n-doping of 0.77 eV, which is caused by the interaction between graphene and substrate. Density functional theory (DFT) calculations show that this interaction can be induced by a coupling between graphene and substrate at specific points of the structure leading to a local sp3 configuration, which also contribute to the D-band in the Raman spectra.

11.
Ultramicroscopy ; 181: 70-73, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28525803

RESUMO

High aspect-ratio Fe nanostrips are known to reversibly switch from a single-domain magnetic state to a multidomain diamond pattern as a function of temperature (T) and width. This magnetic bistability can be understood by the temperature-dependent balance between magnetocrystalline, shape and magnetoelastic anisotropies and has potential applications in magnetic logic devices. However, as Fe nanostructures easily oxidize, protecting the surface with capping layers may be required, which could largely affect the anisotropy balance. Here, we employ x-ray magnetic circular dichroism-photoemission electron microscopy (XMCD-PEEM) to study these thin Fe nanostrips before and after exposure to air.

12.
Rev Sci Instrum ; 87(5): 052002, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27250382

RESUMO

Optical elements of soft x-ray beamlines usually have motorized translations and rotations that allow for the fine alignment of the beamline. This is to steer the photon beam at some positions and to correct the focus on slits or on sample. Generally, each degree of freedom of a mirror induces a change of several parameters of the beam. Inversely, several motions are required to actuate on a single optical parameter, keeping the others unchanged. We define optical pseudomotors as combinations of physical motions of the optical elements of a beamline, which allow modifying one optical parameter without affecting the others. We describe a method to obtain analytic relationships between physical motions of mirrors and the corresponding variations of the beam parameters. This method has been implemented and tested at two beamlines at ALBA, where it is used to control the focus of the photon beam and its position independently.

13.
Nanotechnology ; 27(32): 325705, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27348504

RESUMO

The reactive growth of cobalt germanide on Ge(001) was investigated by means of in situ x-ray absorption spectroscopy photoemission electron microscopy (XAS-PEEM), micro-illumination low-energy electron diffraction (µ-LEED), and ex situ atomic force microscopy (AFM). At a Co deposition temperature of 670 °C, a rich morphology with different island shapes and dimensions is observed, and a correlation between island morphology and stoichiometry is found. By combining XAS-PEEM and µ-LEED, we were able to identify a large part of the islands to consist of CoGe2, with many of them having an unusual epitaxial relationship: CoGe2 [Formula: see text] [Formula: see text] Ge [Formula: see text]. Side facets with (112) and (113) orientation have been found for such islands. However, two additional phases were observed, most likely Co5Ge7 and CoGe. Comparing growth on Ge(001) single crystals and on Ge(001)/Si(001) epilayer substrates, the occurrence of these intermediate phases seems to be promoted by defects or residual strain.

14.
Ultramicroscopy ; 130: 82-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23611842

RESUMO

The structural and magnetic properties of Fe-Pd nanostructures grown on regular alternating Pd and oxygen stripes on the W(110) surface are studied using SPELEEM methods. The self-organized Pd-O stripe template, formed at about 1000 °C and aligned with the [001] direction, has an average period of only few tens nm and is preserved upon quenching the sample temperature to ambient conditions. Fe is shown to preferentially bond to the Pd stripes, forming an Fe-Pd surface alloy within the stripe phase. The magnetic easy axis is found to be aligned perpendicular to the Fe-Pd stripe axis.

15.
J Phys Condens Matter ; 22(1): 015001, 2010 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21386216

RESUMO

The correlation between the thickness-dependent oxidation rate of ultrathin Al films on W(110) and the quantum-well states (QWS) resulting from electron confinement in the Al film has been explored by combined x-ray photoemission electron microscopy (XPEEM), low energy electron microscopy (LEEM), and first-principles calculations. Hybridization with substrate electronic states is observed to alter the film electronic structure, strongly modifying the electron density decay length in vacuum. The decay length, rather than the density of states at the Fermi energy, is found to dominate the observed reactivity trends.

16.
Phys Rev Lett ; 101(8): 085701, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18764637

RESUMO

A stress-induced stripe phase of submonolayer Pd on W(110) is observed by low-energy electron microscopy. The temperature dependence of the pattern is explained by the change both in the boundary free energy and elastic relaxation energy due to the increasing boundary width. The stripes are shown to disorder when the correlation length of the condensed phase becomes comparable to its period, while the condensate to lattice-gas transition takes place at a higher temperature, as revealed by low-energy electron diffraction.

17.
J Chem Phys ; 127(13): 134706, 2007 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-17919042

RESUMO

A low energy electron diffraction (LEED) I/V analysis was performed of the (4 x 4) oxygen structure on Ag(111). Two data sets were used, one recorded with a conventional LEED system and a second with a low energy electron microscope (LEEM). The data sets agree well with each other, demonstrating that I/V structure analyses can be performed with the same quality with LEEM as with conventional LEED. The structure obtained confirms the recently proposed model that involves a reconstruction of the Ag(111) surface. Previous models based on a thin layer of Ag(2)O that had been accepted for more than 30 years are disproved. The reconstruction model contains two units of six triangularly arranged Ag atoms and a stacking fault in one half of the unit cell. The six O atoms per unit cell occupy sites in the trenches between the Ag(6) triangles. Small lateral displacements of the Ag atoms lift the mirror symmetry of the structure, leading to two nonequivalent groups of O atoms. The atoms of both groups are located approximately 0.5 Angstrom below the top Ag layer, on fourfold positions with respect to the top layer Ag atoms. Ag-O distances between 2.05 and 2.3 Angstrom are found. The oxygen atoms exhibit large static or dynamic displacements of up to 0.3 Angstrom at 300 K.

18.
J Phys Chem B ; 110(39): 19108-11, 2006 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17004756

RESUMO

We report a LEEM and XPEEM study of the formation of a variety of stationary two-dimensional metallic and oxygen structures in Au and Au + Pd adlayers on Rh(110) during water formation reaction. They result from chemically frozen spinodal decomposition and are created, preserved, or reversibly modified by tuning the reaction conditions. The wavelength of lamellar structures obtained at intermediate metal coverage is found to obey a power scaling law with respect to the reaction rate.

19.
Phys Rev Lett ; 93(19): 196103, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15600855

RESUMO

The effect of electron quantum confinement on the surface reactivity of ultrathin metal films is explored by comparing the initial oxidation rate of atomically flat magnesium films of different thickness, using complementary microscopy techniques. Pronounced thickness-dependent variations in the oxidation rate are observed for well ordered films of up to 15 atomic layers. Quantitative comparison reveals direct correlation between the surface reactivity and the periodic changes in the density of electronic states induced by quantum-well states crossing the Fermi level.

20.
Phys Rev Lett ; 87(15): 156801, 2001 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-11580716

RESUMO

The dispersion of quantum-well resonances in ultrathin epitaxial Al films on Si(111) reveals energy- and wave vector-dependent reflection properties at the Al/Si interface. The substrate electronic structure strongly influences the phase shift of the electron waves upon reflection at the interface. Thus the details of the substrate electronic structure need to be taken into account for a complete analysis of metallic quantum-well resonances. Furthermore, the assumption of loss of parallel wave vector information upon reflection or transmission through a lattice-mismatched interface is challenged. The changes induced in the electronic structure of the overlayer can be used to probe the ground-state substrate band edges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...