Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36770507

RESUMO

The rhodium oxide (Rh2O3) doping effect on the activity and stability of nickel catalysts supported over yttria-stabilized zirconia was examined in dry reforming of methane (DRM) by using a tubular reactor, operated at 800 °C. The catalysts were characterized by using several techniques including nitrogen physisorption, X-ray diffraction, transmission electron microscopy, H2-temperature programmed reduction, CO2-temperature programmed Desorption, and temperature gravimetric analysis (TGA). The morphology of Ni-YZr was not affected by the addition of Rh2O3. However, it facilitated the activation of the catalysts and reduced the catalyst's surface basicity. The addition of 4.0 wt.% Rh2O3 gave the optimum conversions of CH4 and CO2 of ~89% and ~92%, respectively. Furthermore, the incorporation of Rh2O3, in the range of 0.0-4.0 wt.% loading, enhanced DRM and decreased the impact of reverse water gas shift, as inferred by the thermodynamics analysis. TGA revealed that the addition of Rh2O3 diminished the carbon formation on the spent catalysts, and hence, boosted the stability, owing to the potential of rhodium for carbon oxidation through gasification reactions. The 4.0 wt.% Rh2O3 loading gave a 12.5% weight loss of carbon. The TEM images displayed filamentous carbon, confirming the TGA results.

2.
ACS Omega ; 7(19): 16468-16483, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601323

RESUMO

Developing cost-effective nonprecious active metal-based catalysts for syngas (H2/CO) production via the dry reforming of methane (DRM) for industrial applications has remained a challenge. Herein, we utilized a facile and scalable mechanochemical method to develop Ba-promoted (1-5 wt %) zirconia and yttria-zirconia-supported Ni-based DRM catalysts. BET surface area and porosity measurements, infrared, ultraviolet-visible, and Raman spectroscopy, transmission electron microscopy, and temperature-programmed cyclic (reduction-oxidation-reduction) experiments were performed to characterize and elucidate the catalytic performance of the synthesized materials. Among different catalysts tested, the inferior catalytic performance of 5Ni/Zr was attributed to the unstable monoclinic ZrO2 support and weakly interacting NiO species whereas the 5Ni/YZr system performed better because of the stable cubic ZrO2 phase and stronger metal-support interaction. It is established that the addition of Ba to the catalysts improves the oxygen-endowing capacity and stabilization of the cubic ZrO2 and BaZrO3 phases. Among the Ba-promoted catalysts, owing to the optimal active metal particle size and excess ionic CO3 2- species, the 5Ni4Ba/YZr catalyst demonstrated a high, stable H2 yield (i.e., 79% with a 0.94 H2/CO ratio) for up to 7 h of time on stream. The 5Ni4Ba/YZr catalyst had the highest H2 formation rate, 1.14 mol g-1 h-1 and lowest apparent activation energy, 20.07 kJ/mol, among all zirconia-supported Ni catalyst systems.

3.
Front Chem ; 8: 317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411666

RESUMO

A leading method for hydrogen production that is free of carbon oxides is catalytic methane decomposition. In this research, Fe and Fe-Ni supported catalysts prepared by the wet impregnation method were used in methane decomposition. The effects of doping the parent support (ZrO2) with La2O3 and WO3 were studied. It was discovered that the support doped with La2O3 gave the best performance in terms of CH4 conversion, H2 yield, and stability at the test condition, 800°C and 4,000-ml h-1 g-1 cat. space velocity. The addition of Ni significantly improved the performance of all the monometallic catalysts. The catalysts were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), temperature-programmed reduction/oxidation (TPR/TPO), thermogravimetric analyzer (TGA), and microscopy (SEM and Raman) techniques. Phases of the different forms of Fe were identified by XRD. BET showed a drastic decline in the specific surface area of the catalysts with respect to the supports. TPR profiles revealed a progressive change in the valency of Fe in its combined form to the zero valence-free metal. The La2O3-promoted support gave the best performance and maintained good stability during the time on stream.

4.
Materials (Basel) ; 12(11)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159285

RESUMO

A promising method to reduce global warming has been methane reforming with CO2, as it combines two greenhouse gases to obtain useful products. In this study, Ni-supported catalysts were synthesized using the wet impregnation method to obtain 5%Ni/Al2O3(SA-5239), 5%Ni/Al2O3(SA-6175), 5%Ni/SiO2, 5%Ni/MCM41, and 5%Ni/SBA15. The catalysts were tested in dry reforming of methane at 700 °C, 1 atm, and a space velocity of 39,000 mL/gcat h, to study the interaction of Ni with the supports, and evaluation was based on CH4 and CO2 conversions. 5%Ni/Al2O3(SA-6175) and 5%Ni/SiO2 gave the highest conversion of CH4 (78 and 75%, respectively) and CO2 (84 and 82%, respectively). The catalysts were characterized by some techniques. Ni phases were identified by X-ray diffraction patterns. Brunauer-Emmett-Teller analysis showed different surface areas of the catalysts with the least being 4 m2/g and the highest 668 m2/g belonging to 5%Ni/Al2O3(SA-5239) and 5%Ni/SBA15, respectively. The reduction profiles revealed weak NiO-supports interaction for 5%Ni/Al2O3(SA-5239), 5%Ni/MCM41, and 5%Ni/SBA15; while strong interaction was observed in 5%Ni/Al2O3(SA-6175) and 5%Ni/SiO2. The 5%Ni/Al2O3(SA-6175) and 5%Ni/SiO2 were close with respect to performance; however, the former had a higher amount of carbon deposit, which is mostly graphitic, according to the conducted thermal analysis. Carbon deposits on 5%Ni/SiO2 were mainly atomic in nature.

5.
J Hazard Mater ; 331: 273-279, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28273577

RESUMO

Several combinations of high sulfur affinity elements of Cu, Zn, Fe, and Al were used to prepare sorbent materials that remove hydrogen sulfide (H2S) from air contaminated streams. The combination of these four elements in composite crystallinity structure resembling hydrotalcite-like and aurichalcite-like compounds showed excellent H2S uptake. Further tuning of the relative ratio among these elements resulted in outstanding H2S uptake. XRD revealed that the final sorbent material was featured by crystallinity structure that had two adjacent lower reflection angles. The experimental test showed H2S uptake was around 39% of the sorbent material weight when the concentration of H2S in the outlet was less than 0.5% of its concentration in the inlet. The sorbent material showed high sulfur removal efficiency at ambient temperature without prior calcination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...