Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38456205

RESUMO

The application of nanotechnology in biological and medical fields have resulted in the creation of new devices, supramolecular systems, structures, complexes, and composites. Dendrimers are relatively new nanotechnological polymers with unique features; they are globular in shape, with a topological structure formed by monomeric subunit branches diverging to the sides from the central nucleus. This review analyzes the main features of dendrimers and their applications in biology and medicine regarding cancer treatment. Dendrimers have applications that include drug and gene carriers, antioxidant agents, imaging agents, and adjuvants, but importantly, dendrimers can create complex nanosized constructions that combine features such as drug/gene carriers and imaging agents. Dendrimer-based nanosystems include different metals that enhance oxidative stress, polyethylene glycol to provide biosafety, an imaging agent (a fluorescent, radioactive, magnetic resonance imaging probe), a drug or/and nucleic acid that provides a single or dual action on cells or tissues. One of major benefit of dendrimers is their easy release from the body (in contrast to metal nanoparticles, fullerenes, and carbon nanotubes), allowing the creation of biosafe constructions. Some dendrimers are already clinically approved and are being used as drugs, but many nanocomplexes are currently being studied for clinical practice. In summary, dendrimers are very useful tool in the creation of complex nanoconstructions for personalized nanomedicine. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Dendrímeros , Nanotubos de Carbono , Neoplasias , Dendrímeros/uso terapêutico , Portadores de Fármacos/uso terapêutico , Nanotecnologia , Nanomedicina/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
2.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614277

RESUMO

The fact that cancer is one of the leading causes of death requires researchers to create new systems of effective treatment for malignant tumors. One promising area is genetic therapy that uses small interfering RNA (siRNA). These molecules are capable of blocking mutant proteins in cells, but require specific systems that will deliver RNA to target cells and successfully release them into the cytoplasm. Dendronized and PEGylated silver nanoparticles as potential vectors for proapoptotic siRNA (siMCL-1) were used here. Using the methods of one-dimensional gel electrophoresis, the zeta potential, dynamic light scattering, and circular dichroism, stable siRNA and AgNP complexes were obtained. Data gathered using multicolor flow cytometry showed that AgNPs are able to deliver (up to 90%) siRNAs efficiently to some types of tumor cells, depending on the degree of PEGylation. Analysis of cell death showed that complexes of some AgNP variations with siMCL-1 lead to ~70% cell death in the populations that uptake these complexes due to apoptosis.


Assuntos
Dendrímeros , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , RNA Interferente Pequeno/metabolismo , Prata , Polietilenoglicóis
3.
ACS Biomater Sci Eng ; 9(1): 182-196, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36472577

RESUMO

An ultrasonic method (20 kHz) is introduced to activate pristine ibuprofen organic molecular crystals via complexation with silver in nitrogen-doped oxidized graphene nanoplatforms (∼50 nm). Ultrasonic complexation occurs in a single-step procedure through the binding of the carboxylic groups with Ag and H-bond formation, involving noncovalent πC=C → πC=C* transitions in the altered phenyl ring and πPY → πCO* in ibuprofen occurring between the phenyl ring and C-O bonds as a result of interaction with hydroxyl radicals. The ibuprofen-silver complex in ≪NrGO≫ exhibits a ∼42 times higher acceleration rate than free ibuprofen of the charge transfer between hexacyanoferrate and thiosulfate ions. The increased acceleration rate can be caused by electron injection/ejection at the interface of the ≪Ag-NrGO≫ nanoplatform and formation of intermediate species (Fe(CN)5(CNSO3)x- with x = 4 or 5 and AgHS2O3) at the excess of produced H+ ions. Important for microwave chemotherapy, ibuprofen-silver complexes in the ≪NrGO≫ nanoplatform can produce H+ ions at ∼12.5 times higher rate at the applied voltage range from 0.53 to 0.60 V. ≪Ibu-Ag-NrGO≫ NPs develop ∼105 order higher changes of the electric field strength intensity than free ibuprofen in the microwave absorption range of 100-1000 MHz as revealed from the theoretical modeling of a cervix tumor tissue.


Assuntos
Grafite , Nanopartículas , Neoplasias do Colo do Útero , Feminino , Humanos , Ibuprofeno/química , Prata , Neoplasias do Colo do Útero/tratamento farmacológico , Ultrassom , Micro-Ondas , Íons
4.
Pharmaceutics ; 14(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559243

RESUMO

A convenient method for the synthesis of the second generation of PAMAM dendrimers based on a p-tert-butylthiacalix[4]arene core in cone, partial cone and 1,3-alternate conformations was developed. Unusual fluorescence of the obtained PAMAM-calix-dendrimers has been found and explained. The binding ability of the synthesized dendrimers toward catecholamines (dopamine, L-adrenaline and L-noradrenaline) was shown by UV-Vis, fluorescence, 1D and 2D NMR spectroscopy and the binding constants (logKa 3.85-4.74) calculated. As was shown, the PAMAM-calix-dendrimers bind catecholamines by the internal cavities. All the studied hormones were most efficiently bound by the dendrimers bearing a macrocyclic core in 1,3-alternate conformation. The size of the formed supramolecular systems of dendrimer/catecholamine was established by the DLS method. A decrease in hemolytic activity of the PAMAM-calix-dendrimers with an increase in the generation number of a dendrimer was shown for the dendrimers with a core in 1,3-alternate conformation. The prospects for the use of the synthesized dendrimers with the macrocyclic core as drug delivery agents were discussed.

5.
ACS Biomater Sci Eng ; 8(3): 1181-1192, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35226462

RESUMO

We demonstrate a single-step ultrasonic in situ complexation of salicylic acid during the growth of Fe3O4-reduced graphene oxide nanoparticles (∼10 nm) to improve the antioxidant and antiproliferative effects of pristine drug molecules. These nanoparticles have a precisely defined electronic molecular structure with salicylic acid ligands specifically complexed to Fe(III)/Fe(II) sites, four orders of magnitude larger electric surface potential, and enzymatic activity modulated by ascorbic acid molecules. The diminishing efficiency of hydroxyl radicals by Fe3O4-rGO-SA nanoparticles is tenfold higher than that by pristine salicylic acid in the electro-Fenton process. The H+ production of these nanoparticles can be switched by the interaction with ascorbic acid ligands and cause the redox deactivation of iron or enhanced antioxidation, where rGO plays an important role in enhanced charge transfer catalysis. Fe3O4-rGO-SA nanoparticles are nontoxic to erythrocytes, i.e., human peripheral blood mononuclear cells, but surpassingly inhibit the growth of three cancer cell lines, HeLa, HepG2, and HT29, with respect to pristine salicylic acid molecules.


Assuntos
Antioxidantes , Nanopartículas , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Compostos Férricos/química , Compostos Férricos/farmacologia , Grafite , Humanos , Leucócitos Mononucleares , Ligantes , Nanopartículas/química , Ácido Salicílico/farmacologia , Ultrassom
6.
Pharmaceutics ; 13(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34683842

RESUMO

Cancer is one of the most important problems of modern medicine. At the present time, gene therapy has been developed against cancer, which includes the delivery of anticancer small interfering RNAs (siRNAs) directed at cancer proteins. The prospect of creating drugs based on RNA interference implies the use of delivery systems. Metal nanoparticles are the most studied objects for medicine, including their application as non-viral vectors. We have synthesized gold nanoparticles (AuNPs) modified with cationic carbosilane dendrons of 1-3 generations, with a positive charge on the surface, gold nanoparticles can effectively bind small interfering RNAs. Using a photometric viability test and flow cytometry, we assessed the ability of dendronized gold nanoparticles in delivering siRNAs to tumor cells. The efficiency of the complexes in initiating apoptosis was measured and, also, the overall effect of proapoptotic siRNA on cells. AuNP15 has both the highest efficacy and toxicity. The delivery efficiency in suspension cell lines was 50-60%. Complexes with targeted siRNA decreased cell viability by 20% compared to control and initiated apoptosis.

7.
J Biotechnol ; 331: 48-52, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33727080

RESUMO

The interaction of nanoparticles (NP) with proteins (the so-called 'protein corona') is a huge challenge in attempting to apply them in personalized nanomedicine. We have analyzed the interaction between A) two 'soft' NPs (a cationic phosphorus dendrimer of generation 3; a cationic phosphorus amphiphilic dendron of generation 2), and B) one 'hard' nanoparticle (silver NP covered with cationic carbosilane dendritic moieties); and membrane-bound protein phospholipase A2 from bovine pancreas. The hard and soft NPs have differences in the nature of their interactions with phospholipase A2. This enzyme surrounds hard AgNP, whereas dendrimer and amphiphilic dendron form aggregates/micelles with phospholipase A2. There is a difference in action of phospholipase A2 bound to the core of dendrimer, and of micelles formed from non-covalent interactions between the amphiphilic dendron. These data are important in understanding the nature of interaction between different kinds of nanoparticles and proteins.


Assuntos
Dendrímeros , Nanopartículas Metálicas , Nanopartículas , Animais , Bovinos , Micelas , Fosfolipases A2 , Prata
8.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629868

RESUMO

Gene therapy is a promising approach in cancer treatment; however, current methods have a number of limitations mainly due to the difficulty in delivering therapeutic nucleic acids to their sites of action. The application of non-viral carriers based on nanomaterials aims at protecting genetic material from degradation and enabling its effective intracellular transport. We proposed the use of silver nanoparticles (AgNPs) surface-modified with carbosilane dendrons as carriers of anticancer siRNA (siBcl-xl). Using gel electrophoresis, zeta potential and hydrodynamic diameter measurements, as well as transmission electron microscopy, we characterized AgNP:siRNA complexes and demonstrated the stability of nucleic acid in complexes in the presence of RNase. Hemolytic properties of free silver nanoparticles and complexes, their effect on lymphocyte proliferation and cytotoxic activity on HeLa cells were also examined. Confocal microscopy proved the effective cellular uptake of complexes, indicating the possible use of this type of silver nanoparticles as carriers of genetic material in gene therapy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas Metálicas/administração & dosagem , Silanos/química , Dendrímeros/administração & dosagem , Dendrímeros/química , Terapia Genética/métodos , Células HeLa , Hemólise , Humanos , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Ácidos Nucleicos/uso terapêutico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Prata/química
9.
Int J Pharm ; 573: 118867, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31765788

RESUMO

Heterofunctionalized gold nanoparticles (AuNPs) were obtained in a one pot reaction of gold precursor with cationic carbosilane dendrons (first to third generations, 1-3G) and (polyethylene)glycol (PEG) ligands in the presence of a reducing agent. The final dendron/PEG proportion on AuNPs depends on the initial dendron/PEG ratio (3/1, 1/1, 1/3) and dendron generation. AuNPs were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), ultraviolet spectroscopy (UV-VIS), thermogravimetric analysis (TGA), nuclear magnetic resonance (1H NMR) and zeta potential (ZP). Several assays have been carried out to determine the relevance of PEG/dendron ratio and dendron generation in the biomedical properties of PEGylated AuNPs and the results have been compared with those obtained for non-PEGylated AuNPs. Finally, analyses of PEG recognition by anti-PEG antibodies were carried out. In general, haemolysis, platelet aggregation and toxicity were reduced after PEGylation of AuNPs, the effect being dependent on dendron generation and dendron/PEG ratio. Dendron generation determines the exposure of PEG ligand and the interaction of this ligand with AuNPs environment. On the other hand, increasing PEG proportion diminishes toxicity but also favors interaction with antibodies.


Assuntos
Dendrímeros/toxicidade , Portadores de Fármacos/toxicidade , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Silanos/toxicidade , Cátions/química , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética/métodos , Química Farmacêutica/métodos , Dendrímeros/química , Portadores de Fármacos/química , Difusão Dinâmica da Luz , Eritrócitos/efeitos dos fármacos , Ouro/química , Células HeLa , Humanos , Leucócitos Mononucleares , Espectroscopia de Ressonância Magnética , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Agregação Plaquetária/efeitos dos fármacos , Polietilenoglicóis/química , Silanos/química , Testes de Toxicidade
10.
Colloids Surf B Biointerfaces ; 182: 110354, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31325775

RESUMO

Nanoflowers - new nanostructures - have aroused the interest of scientists due to the topographic features of nanolayers, the special location of which allows a higher surface-to-volume ratio compared to classic spherical nanoparticles, which significantly increases the efficiency of surface reactions for nanoflowers. The main purpose of these types of nanomaterials is their use as enzyme stabilizers. To facilitate the functioning of enzymes under different conditions, organic-inorganic hybrid nanomaterials have been developed, the name of which indicates that all components of inorganic nanoparticles are associated with organic materials. These nanoparticles have many promising applications in catalysis, as biosensors, and for drug delivery. Organic-inorganic hybrid nanoflowers have led to the development of a new branch of chemistry - the chemistry of hybrid nanomaterials - in which research is rapidly developing. Thus, studying organic-inorganic hybrid nanocrystals can lead to creative new solutions in the field of chemistry of enzyme systems and the rapid development of bionanomaterials and new biotechnology industries. Present review focuses on wide biomedical applications of nanoflowers including biocatalysis, detection of substances, electrochemical biosensors based on nanoflowers, photosensitizers, drug and gene carriers and detection of various diseases, photothermal and other treatments. It will be interesting for wide range of scientists focusing in topic of new kinds of nanoparticles.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas/síntese química , Nanomedicina/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Animais , Biocatálise , Sistemas de Liberação de Medicamentos/métodos , Técnicas Eletroquímicas , Humanos , Estruturas Metalorgânicas/ultraestrutura , Nanomedicina/instrumentação , Nanoestruturas/administração & dosagem , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Tamanho da Partícula , Fármacos Fotossensibilizantes/química , Propriedades de Superfície
11.
Future Med Chem ; 11(14): 1741-1756, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31287722

RESUMO

Coordination of ruthenium arene fragments on carbosilane dendrimers' surface greatly increases their antitumor properties. Newly synthetized ruthenium dendrimers are water-soluble, monodisperse and stable. Since carbosilane dendrimers are good carriers of drugs and genes, the presence of ruthenium in their structure makes them promising candidates for new drug delivery systems with improved antitumor potential. Carbosilane ruthenium dendrimers are more toxic to cancer cells than normal cells. Results of several in vitro studies applied here indicate that carbosilane ruthenium dendrimers induce apoptosis in promyelocytic leukemia HL-60 cells.


Assuntos
Antineoplásicos/farmacologia , Dendrímeros/farmacologia , Leucemia Promielocítica Aguda/tratamento farmacológico , Compostos Organometálicos/farmacologia , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/síntese química , Dendrímeros/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Rutênio/química , Relação Estrutura-Atividade
12.
Colloids Surf B Biointerfaces ; 179: 226-232, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30974260

RESUMO

Dendrimers are hyperbranched polymers for delivery of therapeutic genetic material to cancer cells. The fine tuning chemical modifications of dendrimers allow for the modification of the composition. The architecture and the properties of dendrimers are key factors to improve their in vitro and in vivo properties such as biocompatibility with cells and tissues and their pharmacokinetic/pharmacodynamic behavior. The side effects of dendrimers on structure and function of proteins is an important question that must be addressed. We herein describe the effect of newly synthesized piperidine-based cationic phosphorous dendrimers of 2 generations and commercial cationic, neutral and anionic poly(amidoamine) (PAMAM) dendrimers of 4th generation on immunochemical properties of 2 serum proteins: human serum albumin (HSA) and alpha-1-microglobulin (A1M). Both can bind and transfer ligands in blood, including hormones, fatty acids, toxins and drugs, and have immunoreactivity properties. Comparing the effects of piperidinium-terminated phosphorus and cationic, neutral and anionic PAMAM dendrimers on HSA and A1M, we conclude that, in the case of equimolar complexes, these dendrimers had no significant effect on immunoreactivity of proteins. In contrast, the formation of complexes in which a protein is fully bound to dendrimers leads to partial (1.2-2.3 times) reduction in protein immunoreactivity. The most important fact is that dendrimer-induced change in immunoreactivity of proteins is not complete, even if the protein is entirely bound by dendrimers. This means that the application of dendrimers in vivo will not totally hamper the immunoreactivity of these proteins and antibodies.


Assuntos
alfa-Globulinas/imunologia , Dendrímeros/metabolismo , Albumina Sérica Humana/imunologia , Anticorpos Monoclonais/metabolismo , Antígenos/metabolismo , Dendrímeros/química , Estradiol/metabolismo , Humanos , Eletricidade Estática , Tiroxina/metabolismo
13.
Pharmaceutics ; 10(3)2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096839

RESUMO

The lack of an appropriate intracellular delivery system for therapeutic nucleic acids (TNAs) is a major problem in molecular biology, biotechnology, and medicine. A relatively new class of highly symmetrical hyperbranched polymers, called dendrimers, shows promise for transporting small TNAs into both cells and target tissues. Dendrimers have intrinsic advantages for this purpose: their physico-chemical and biological properties can be controlled during synthesis, and they are able to transport large numbers of TNA molecules that can specifically suppress the expression of single or multiple targeted genes. Numerous chemical modifications of dendrimers extend the biocompatibility of synthetic materials and allow targeted vectors to be designed for particular therapeutic purposes. This review summarizes the latest experimental data and trends in the medical application of various types of dendrimers and dendrimer-based nanoconstructions as delivery systems for short small interfering RNAs (siRNAs) and microRNAs at the cell and organism levels. It provides an overview of the structural features of dendrimers, indicating their advantages over other types of TNA transporters.

14.
Int J Biol Macromol ; 118(Pt B): 1773-1780, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29997045

RESUMO

Functionalization of gold nanoparticles by different chemical groups is an important issue regarding the biomedical applications of such particles. Therefore we have analyzed the interaction between gold nanoparticles functionalized by carbosilane dendrons with human serum albumin at different pHs, and in the presence of the protein unfolding agent, guanidine hydrochloride, using circular dichroism, zeta-potential and fluorescence quenching. The effect of a nanoparticle dendronization and pure dendrons on the immunoreactivity of albumin was estimated using ELISA. In addition, the tool to estimate the binding capacity of dendronized gold nanoparticles using a hydrophobic fluorescent probe 1,8-ANS (1-anilinonaphthalene-8-sulfonic acid) was chosen. We concluded that the effect of a nanoparticle on the structure, immunochemical properties and unfolding of albumin significantly decreased with second and third generations dendrons attached. Differences in pH dependence of the interaction between nanoparticles, their dendrons and albumin showed several effects of the "dendritic corona" and the metallic part of nanoparticle on the protein. These interactions indicate changes in the immunoreactivity of the protein, whereas dendron coating per se had no effect. Thus, dendronization of gold nanoparticles helps to shield them from interactions with plasma proteins.


Assuntos
Cátions , Dendrímeros , Ouro , Nanopartículas Metálicas , Albumina Sérica Humana/química , Silanos , Cátions/química , Dicroísmo Circular , Dendrímeros/química , Ouro/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Nanopartículas Metálicas/química , Ligação Proteica , Albumina Sérica Humana/metabolismo , Silanos/química , Relação Estrutura-Atividade
15.
Colloids Surf B Biointerfaces ; 155: 11-16, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28388470

RESUMO

Thrombin is an essential part of the blood coagulation system; it is a serine protease that converts soluble fibrinogen into insoluble strands of fibrin, and catalyzes many other coagulation-related reactions. Absorption at its surface of small nanoparticles can completely change the biological properties of thrombin. We have analyzed the influence on thrombin of 3 different kinds of small nanoparticles: dendrimers (phosphorus-based, carbosilane based and polyamidoamine) and 2 hybrid systems containing carbosilane, viologen and phosphorus dendritic scaffolds in one single molecule, bearing different flexibility, size and surface charge. There was significant alteration in the rigidity of the rigid dendrimers in contrast to flexible dendrimers. These differences in their action are important in understanding interactions taking place at a bio-nanointerface.


Assuntos
Dendrímeros/química , Nanopartículas/química , Fósforo/química , Silanos/química , Trombina/química , Sítios de Ligação , Coagulação Sanguínea , Humanos , Cinética , Modelos Moleculares , Nanopartículas/ultraestrutura , Nanotecnologia , Ligação Proteica , Estrutura Secundária de Proteína , Soluções , Eletricidade Estática
16.
Dalton Trans ; 46(27): 8736-8745, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28091639

RESUMO

Gold nanoparticles (AuNPs) and polycationic macromolecules are used as gene carriers. Their behaviour is dependent on several factors, such as the size and type of the framework, charge, etc. We have combined both types of systems and prepared AuNPs covered with cationic carbosilane dendrons with the aim to evaluate their biocompatibility. Water soluble dendronized cationic AuNPs were prepared following a straightforward procedure from dendrons, a gold precursor and a reducing agent in water and were characterized by 1H NMR, transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), ultraviolet spectroscopy (UV), and zeta potential (ZP). The biological properties of dendrons and AuNPs were determined by hemolysis, platelet aggregation and lymphocyte proliferation. These assays reflect modification of dendron properties when covering nanoparticles. For dendrons, hemolysis and platelet aggregation are generation dependent whilst, for AuNPs these properties are related to the bigger size of NPs. On the other hand, none of the systems induced lymphocyte proliferation. Selected cationic dendrons and AuNPs were chosen for gene delivery experiments employing a small interference RNA (siRNA Nef) against human immunodeficiency virus (HIV).


Assuntos
Dendrímeros/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacologia , Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas/química , Silanos/química , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Portadores de Fármacos/química , HIV/genética , Hemólise/efeitos dos fármacos , Humanos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética
17.
Colloids Surf B Biointerfaces ; 134: 377-83, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26218524

RESUMO

Protein absorption at the surface of big nanoparticles and formation of 'protein corona' can completely change their biological properties. In contrast, we have studied the binding of small nanoparticles - dendrimers - to proteins and the formation of their 'nanoparticle corona'. Three different types of interactions were observed. (1) If proteins have rigid structure and active site buried deeply inside, the 'nanoparticle corona' is unaffected. (2) If proteins have a flexible structure and their active site is also buried deeply inside, the 'nanoparticle corona' affects protein structure, but not enzymatic activity. (3) The 'nanoparticle corona' changes both the structure and enzymatic activity of flexible proteins that have surface-based active centers. These differences are important in understanding interactions taking place at a bio-nanointerface.


Assuntos
Dendrímeros/química , Nanopartículas/química , Proteínas/química , Dicroísmo Circular , Microscopia Eletrônica de Varredura , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...